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EXECUTIVE SUMMARY 

Under the National Pollutant Discharge Elimination System (NPDES) State Disposal System (SDS) General 

Permit issued by the Minnesota Pollution Control Agency (MPCA), the Minnesota Department of 

Transportation (MnDOT) is required to retain the first inch of highway stormwater runoff. The University 

of Minnesota Duluth (UMD) Natural Resource Research Institute (NRRI) received two years of funding 

from MnDOT for the project Comparing Properties of Water Absorbing/Filtering Media for 

Bioslope/Bioswale Design to evaluate the water absorbing, filtering, pollutant capture, and plant growth 

properties of natural media for application in bioslopes and bioswales along state highways. In northeast 

Minnesota, reuse of road construction waste products, such as peat and muck soils, combined with 

taconite tailings (sand-sized mining byproduct) could provide a suitable media for biofiltration treatment 

of stormwater that meets NPDES goals, improves best management practices (BMPs), and potentially 

reduces construction costs. 

The characteristics of these materials, such as peat and muck, and their potential salvage and reuse with 

taconite tailings or sand were evaluated for utilization in constructed vegetated slopes along highway 

right of ways in northeast Minnesota. 

Current MnDOT specifications that require filtration media include a mix of between 60 – 80% sand with 

the remainder made up of organic compost that is either added to the sand or applied as a blanket. Peat 

and muck have also been studied for use as soil amendments. Peat provides better hydraulic properties, 

providing both capture and filtration of water and pollutants, and supports vegetation growth. Study of 

muck as a filtration media is limited. In October and November 2015, our team identified and collected 

compost from the Western Lake Superior Sanitary District (WLSSD), salvaged peat and muck from Hwy 

53 Tini pit, taconite tailings from ArcelorMittal, commercial peat from Premier Horticulture, and sand 

from Solway Township. These materials were used in our laboratory characterization and field pilot test.  

A suite of laboratory methods for characterizing treatment materials to test physical, chemical, and 

biological properties of collected materials was developed. Tests were selected based on a review of the 

literature. The three main objectives of the tests were: (1) to classify the study materials for aiding in the 

reproducibility of the study results; (2) to define the properties of the individual study media in order to 

predict their performance when applied in-situ; and (3) to inform the development of filter media mix 

designs that optimize the stormwater treatment performance in bioinfiltration BMPs. Infiltration rates 

were measured using saturated hydraulic conductivity as measured in the falling head test. Batch and 

column leaching experiments were used to quantify pollutant (copper, lead, zinc, nitrate, phosphate) 

removal efficiency of single and mixed materials. Bioassays and greenhouse studies were used to 

evaluate plant growth on the substrates and mixes. 

Various material combinations were tested using the above methods, and based on the results, pilot 

scale testing was initiated. Pilot field tests were installed along NRRI’s parking lot and include three plots 

containing a 50:50 peat and sand mixture, and another three plots with a 50:50 compost and sand 

mixture. Water infiltration, discharge water quality, and vegetation establishment were monitored 

between April and August 2017.  



 

The findings from the laboratory and field pilot tests are summarized based on three disciplines: civil 

engineering, environmental engineering, and biology.  

CIVIL ENGINEERING  

The primary civil engineering design requirement was infiltration rate. Because the saturated condition 

represents the worst-case scenario, saturated hydraulic conductivity was used as a measure of 

infiltration rate and, therefore, water holding capacity. A minimum requirement of 1.5*10-4 cm/sec was 

determined from testing media based on current MnDOT specifications for bioslope and bioswale design 

(40 – 60% commercial compost mixed with sand). Laboratory results showed that muck had 

unacceptably low hydraulic conductivity. Peat performed at least as well as compost in terms of 

saturated hydraulic conductivity and other important hydraulic and geotechnical considerations. 

Additionally, taconite tailings and sand were interchangeable from a civil engineering perspective. Initial 

data from pilot field tests showed the two mixes (50:50 mix of peat and sand, 50:50 mix of compost and 

sand) had similar water storage capacity. 

Results from this project show that the saturated infiltration rate as measured using the falling head test 

best predicts a biofilter media mixture’s ability to meet civil engineering requirements. In summary, 

mixtures composed of 40 – 60% peat with the remainder composed of either sand or taconite tailings 

compare favorably with current MnDOT specifications for bioslope and bioswale design. It is important 

to note, however, that due to the variability of materials, not all peat or taconite tailings will behave the 

same. 

ENVIRONMENTAL ENGINEERING 

The environmental tests of salvaged filtration materials quantified pollution retention capacities of each 

material under steady or dynamic conditions. Under steady conditions, salvaged peat, compost, and 

commercial peat performed well, with high metal (copper, lead, and zinc) retention capacities, generally 

over 80%, and the difference among these materials was small. Muck can adsorb around 50% of metals. 

In contrast to the high removal efficiencies for metals, these organic materials did not remove nutrients, 

especially compost, which released a significant amount of nitrate and some phosphate. 

The release of phosphate from compost was also observed in column leaching experiments and the field 

pilot test. More than 1000 µg/L phosphate was exported from compost columns or field pilots 

containing compost. In addition, average metal removal efficiencies by compost were around 83% for 

copper and zinc, which were significantly lower than metal removal efficiencies by salvaged peat (more 

than 98%) under dynamic conditions.  

Taconite tailings showed the potential to remove phosphate, especially under slightly acidic conditions 

(pH around 6). Commercial peat produced acidic outflow, and the combination of commercial peat with 

taconite tailings led to outflow phosphate concentrations of around 10 µg/L.  

Overall, salvaged peat had better pollutant remove efficiencies than compost. Taconite tailings can be 

used to replace sand to enhance potential phosphate removal.  



 

BIOLOGY 

Compost and peat both performed well in mixtures with sand and taconite tailings in providing a viable 

substrate for plant growth. Media mixes containing compost, especially at 25% compost, performed the 

best in plant growth trials. Muck was difficult to mix with any other media and its value for plant growth 

was minimal. Greenhouse study results showed little to no significant effect of sand vs. tailings on plant 

growth response. However, replacing compost with peat resulted in reduced plant growth with 

increasing amounts of peat. This could be remedied with additions of supplemental phosphorus and 

potassium fertilizer, as these were shown to be deficient in the nutrient analyses. 

The MnDOT Suitability to Grow test and Solvita® tests have the potential for rapid analysis of media, and 

in most cases, predicted success in the greenhouse trials. The exception was the Suitability to Grow test 

for compost, which gave false negative results. The seed germination and plant growth greenhouse 

trials and nutrient analysis provided the most information on potential treatment media success in 

supporting plant establishment and growth. 

Both peat and compost support plant establishment and growth. Due to documented variability in 

peat’s properties depending on origin and degree of decomposition, it may be prudent to evaluate peat 

materials on a case-by-case basis when used in stormwater treatment devices. Sand and tailings are 

interchangeable from a plant growth perspective. 

RECOMMENDATIONS 

This project demonstrated that peat has high potential to replace commercial compost in MnDOT 

standard bioslope and bioswale design. Additionally, taconite tailings performed comparably to the sand 

currently specified in MnDOT designs. Results from this project showed that muck has little potential to 

replace commercial compost or peat due to low permeability and infiltration capacity, filtration, and 

plant growth support. Finally, a pilot field study established good agreement between laboratory results 

and field measurements for the 50:50 peat-sand mixes, as well as comparing performance between 

peat-sand mixes and compost-sand mixes. 

Finding alternatives to commercial compost and sand would help MnDOT meet regulatory requirements 

as well as reduce purchase and shipping costs and the need to transport and store excavated material 

from rural road construction sites. This project exhibits the potential to use what was previously waste 

material in a beneficial manner.  
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CHAPTER 1:  INTRODUCTION 

Drainage from highways, particularly the first flush of runoff, contains high levels of contaminants such 

as suspended solids, metals, and organics. To restrict the discharge of polluted stormwater, the National 

Pollutant Discharge Elimination System (NPDES) State Disposal System (SDS) General Permit issued by 

the Minnesota Pollution Control Agency (MPCA) in 2013 requires that the first inch of stormwater runoff 

from new impervious should be held on site through infiltration, harvesting, or reuse. Multiple types of 

infiltration materials have been studied in the laboratory and the field, but few studies have considered 

the application of local materials for best management practices (BMP). The project team sought out 

treatment media sources in close proximity to current and future highway construction projects in 

MnDOT District 1 in northern Minnesota using published maps, geotechnical soil boring reports, and in 

coordination with MnDOT staff. Media include salvaged peat, muck, commercially available peat from 

approved sources, and taconite tailings.  

The objective of this project was to determine the characteristics of various naturally occurring water 

adsorbing and filtering media, such as peat and muck, found along road construction projects in 

northern Minnesota. Salvage and reuse of these materials during road construction was evaluated for 

stormwater treatment properties, including absorption, infiltration, filtration, and pollutant capture, in 

constructed vegetated slopes along highway right of ways. The naturally occurring materials were 

compared to leaf and grass feedstock compost. Based on the characterization results, suggestions for 

testing, design, implementation, and monitoring protocols for construction of an in-field pilot study will 

be developed for bioslopes and bioswales.  

The comprehensive literature review assembled examples of stormwater treatment utilizing bioslope/

bioswale in practice, BMPs, and construction methods. The researchers focused on local, state, and 

federal regulations to ensure that examples apply to this project’s area of interest. The literature review 

also revealed experiment protocol and material properties important in previous designs. Tests to 

determine relevant properties were chosen from currently standardized experiments or were tailored to 

the selected media. Laboratory experiments determined the biological, civil engineering, and 

environmental engineering properties of selected media and mixtures. All tests were either 

standardized (i.e., ASTM International (ASTM), Environmental Protection Agency (EPA), etc.) or designed 

in a manner to ensure repeatability. Evaluation concentrated on physical, chemical, and biological 

properties of selected peat samples, muck samples, and commercially available peat as compared to 

specified MnDOT compost products.  

1.1 CIVIL ENGINEERING 

Geotechnical characterization included soil classification, compaction, permeability, and strength. These 

properties were measured using standard ASTM or commonly accepted methods. Infiltration and water 

retention capacity were measured. This suite of tests was adapted to include lessons learned in the 

literature review. 
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1.2 ENVIRONMENTAL ENGINEERING 

The study samples’ chemical properties such as organic content, pH, metal and nutrient content were 

characterized in the Natural Resources Research Institute’s (NRRI) analytical laboratories. In addition, 

samples were evaluated for effectiveness in removing chemicals (copper, lead, and zinc) and nutrients 

(phosphorus, nitrogen) in batch mixing and continuously flushing conditions. Testing included mixtures 

of organic materials, such as peat, compost, and muck, with inorganic materials, such as sand and 

taconite tailings. Laboratory-prepared solutions were utilized. Leachate from columns was collected to 

characterize contaminant removal efficiencies under dynamic conditions.  

1.3 BIOLOGICAL  

Potential treatment media must not only possess the proper physical and chemical characteristics to 

effectively treat water flow and contaminants but must also have the ability to grow and support 

vegetation. An initial inspection of potential treatment media “salvage” sites was conducted to evaluate 

any plant species present including introduced, native, invasive species, or noxious weeds. This gave a 

preliminary indication of media fertility and seed bank. Potential phytotoxic properties and the ability to 

grow plants were tested in germination studies at NRRI. Nutrient analyses were also conducted on 

organic materials to determine potential fertility. Based on preliminary results, germination and plant 

growth greenhouse studies were also conducted on media mixtures. 

1.4 FIELD TEST  

Based on laboratory testing results, the authors have provided recommendations for initial treatment 

system design. Project considerations, such as media application, site selection, material 

salvage/collection, construction methods, and re-vegetation, are suggested. A preliminary field pilot test 

is currently being conducted on a slope adjacent to the NRRI parking lot using the materials selected 

from laboratory testing results. The utilization of local salvage materials for stormwater treatment has 

potential implications for future green infrastructure development as well as reducing project cost. 

1.5 REPORT ORGANIZATION  

This project investigated the characteristics of studied filtration materials through laboratory and field 

pilot tests. The field application of these materials in stormwater treatment system is not included in 

this project but will be investigated in the next project. This final report begins with a background 

chapter (Chapter 2) to review the application of bioslopes and bioswales as stormwater treatment 

BMPs. Chapter 3 describes the sources of studied filtration materials and sample collections. Chapter 4 

lists the methods to be used to quantify biological, civil, and environmental properties of filtration 

materials in the laboratory. The experiment results created by using methods described in Chapter 4 are 

presented in Chapter 5. Chapter 6 presents the design of the field pilot test and preliminary results. A 

general conclusion of this study is presented in Chapter 7. 
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CHAPTER 2:  BACKGROUND 

2.1 INTRODUCTION 

This chapter provides context for the implementation of bioinfiltration BMPs such as bioslopes and 

bioswales for the treatment of stormwater runoff. The performance and factors affecting the 

performance of bioinfiltration BMPs are reviewed. Additionally, a review and synthesis of research 

related to filter media and soil amendments for improving water absorption, geotechnical properties, 

vegetative support, and pollutant capture in bioinfiltration BMPs is provided. This review also focuses on 

the beneficial reuse of waste materials readily available in northern Minnesota. These materials will be 

compared to compost, peat, muck, and taconite tailings.  

2.2 OVERVIEW 

The accumulation of pollutants on roadways can result in contaminated stormwater runoff that has a 

negative effect on receiving water quality, groundwater quality, and aquatic ecosystems (EPA, 1995). 

Pollutants accumulate on roadways via three primary mechanisms: atmospheric deposition, vehicle 

deposition, and maintenance activities (Barrett et al., 1995). Typically occurring roadway pollutants, 

presented in Table 2.1, include suspended solids, heavy metals, excess nutrients (nitrogen and 

phosphorus), deicing chemical constituents, pesticides, herbicides, petroleum byproducts, organic 

compounds, and bacteria. Median pollutant concentrations for highway runoff and discharge limits are 

also provided (Herrera Environmental Consultants, 2007). 

Additionally, roadways increase impervious surface area resulting in an increase in runoff volume and 

peak discharge intensity. Increasing runoff volume and intensity can result in increased erosion and 

turbidity, which has been linked to negative impacts on water quality and public health (Gaffield, 2003).  

During dry periods, pollutants accumulate on roadways until a precipitation event occurs. The initial 

precipitation mobilizes the built-up pollutants and washes them off the road surface in what’s known as 

“first flush” behavior (Kayhanian et al., 2012). First flush behavior implies that a majority of accumulated 

pollutants are washed off in a relatively small fraction of initial stormwater runoff. The well-documented 

occurrence of first flush behavior (Barrett, 1998; Bertrand-Krajewski, 1998; Deng, 2009; Gupta and Saul, 

1996) has led stormwater management policy in the United States to focus on the treatment of the first 

inch of runoff, maintaining pre-development hydrology and protecting receiving waters. 
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Table 2.1. Typically occurring roadway pollutants, their sources, nationwide median concentrations in 

stormwater and Minnesota discharge limits (Barber et al., 2006; Clar et al., 2004; EWGCC, 2000; Herrera 

Environmental Consultants, 2007; Kobriger, 1984; MPCA, 2015; TRB, 2006; Yonge, 2000). 

Pollutant Source Median Concentration Water Quality Standards* 

Total Suspended Solids Pavement wear, vehicles, 
atmospheric deposition, 
maintenance activities, snow/ice 
control, sediment disturbance   

78.4 mg/L 10 mg/L 

Heavy Metals Tire wear, atmospheric 
deposition, vehicle wear, motor 
oil, grease, rust, highway 
structures (bridges, guardrails), 
metal plating, insecticides and 
fungicides, lubricants, diesel fuel, 
gasoline, asphalt paving 

Cu: 11.1 µg/L 
Pb: 50.7 µg/L 
Zn: 129 µg/L 

At hardness = 50 mg/L 
Cu: CS = 6.4 µg/L, MS = 9.2 
µg/L, FAV = 18 µg/L 
Pb: CS = 1.3 µg/L, MS = 34 
µg/L, FAV = 68 µg/L 
Zn: CS = 59 µg/L, MS = 65 µg/L, 
FAV = 130 µg/L       

Nitrogen and 
Phosphorus 

Atmospheric deposition, fertilizer 
applications, dead plant material, 
road-kill, sediments, exhaust  

TN: 2 mg/L 
TKN: 1.47 mg/L 
NO2+NO3: 0.533 mg/L 
TP: 0.259 mg/L 
TSP: 0.103 mg/L 

TP = 12 – 150 µg/L depending 
on locations and types of rivers 
and lakes 

Sodium and Chloride Deicing salts  Cl- (MN): 116 mg/L CS = 230 mg/L 
MS = 860 mg/L 
FAV = 1720 mg/L 

Sulfates Fuels, deicing salts   

Petroleum Spills, leaks, hydraulic fluids, 
asphalt surface  

  

Polycyclic aromatic 
hydrocarbons (PAH) 

Exhaust   

Pesticides and 
herbicides 

Atmospheric deposition, spraying 
of rights-of-way, soils  

  

Polychlorinated 
biphenyl (PCB) 

Atmospheric deposition    

Bacteria  Soil litter, wildlife waste, road-
kill, trucks hauling livestock waste  

570 – 6200  
(Range of average total 
coliform, CFU/100 mL) 

 

*Class 2 Aquatic Life and Recreation (MPCA, 2015). 

NOTE: Cu=copper; Pb = lead; Zn = zinc; TN = total nitrogen; TKN = total Kjeldhal nitrogen; TP = total 

phosphorus; TSP = total soluble phosphorus; Cl = chloride; CS = chronic standard; MS = maximum 

standard; FAV = final acute value. 
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2.3 POLICY AND REGULATIONS 

In Minnesota, the construction of new impervious surfaces requires a “Construction Stormwater 

General Permit” issued in accordance with the NPDES. The NPDES Construction Stormwater permit is 

issued in compliance with the Clean Water Act of 1972 including more recent amendments which 

address stormwater directly (MPCA, 2013). The permit explicitly requires the retention and treatment of 

the first inch of runoff from new construction. Linear construction projects such as roadways present 

unique issues for achieving compliance due to the variety of land types encountered and limited “right 

of way” acquisition. Possible permitted solutions to these issues include bioinfiltration and bioretention 

systems such as bioslopes and bioswales (Stenlund, 2014a).  

2.4 BEST MANAGEMENT PRACTICES: BIOSLOPES AND BIOSWALES 

A bioswale is a vegetated channel designed to provide linear conveyance, retention, and water quality 

treatment of stormwater, pictured in Figure 2.1. A bioslope is a flat vegetated slope designed to provide 

sheet flow conveyance, retention and treatment of runoff, shown in Figure 2.2. Bioslopes and bioswales 

are often constructed as a treatment train series with the bioslope conveying sheet flow to the bioswale 

for linear transport, as pictured in Figure 2.3. Both provide water quality improvement by mass removal 

and concentration reduction (Barrett et al., 1998a). Mechanisms for treatment include volume 

reduction through infiltration into the soil, physical filtration by soil media, sedimentation, biological 

treatment by plant uptake and microbial action, and adsorption through interaction with soil 

components (Barrett et al., 1998a). A comparison by Claytor and Schueler (1996) of several BMP types 

found that bioswales and bioslopes provide moderate to high levels of removal for heavy metals, total 

suspended solids, and nutrients. The primary advantage of bioslopes and bioswales is the relatively low 

cost (Deletic, 2005) and feasibility of construction (Stenlund, 2014a). 
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Figure 2.1 A bioswale adjacent to a highway (California Department of Transportation (Caltrans), 2015). 

  

Figure 2.2 Bioslope adjacent to a highway (Caltrans, 2004). 
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Figure 2.3 A highway bioslope and bioswale treatment train (adapted from North Carolina Department of 

Transportation, 2012). 

 

2.5 POLLUTANT REMOVAL PERFORMANCE OF BIOSLOPES AND BIOSWALES 

A review of the literature on the performance of bioslopes and bioswales for removal of pollutants 

shows that relative to cost these BMP options provide high levels of treatment. Commonly studied 

pollutants and removal efficiencies are summarized in Table 2.2.  

High removal rates of suspended solids and moderate removal rates of metals indicate that bioslopes 

and bioswales can be used to effectively treat stormwater. In addition, a number of design factors have 

been found to exert control over the performance of these BMPs. Due to their effect on bioslope and 

bioswale performance, the optimization of these factors can provide enhanced stormwater pollution 

treatment abilities. 
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Table 2.2 Pollutant removal efficiencies from field studies of bioslopes and bioswales. 

Reference BMP Type 

Removal Efficiency 

Suspended 
Solids 

Heavy Metals Nutrients BOD & COD 

Backstrom, 2002 Bioswale 79 – 98%    

Barrett, 2004 Bioswale 60% 
Total: Zn=62% 
Dissolved: Zn=24%  

Total: 60% 
Dissolved: 40%  

** 

Barrett, 2004 Bioswale 86% Pb=30%, Zn=87% 
N=35%,TKN=39% 
P=38% 

 

Barrett et al., 
1998b 

Bioswale 85 – 87% 
Zn=75%, Pb=17%, 
Fe=75%  

Total P=34-44%, 
TKN=23 – 50% 

COD= 61 – 63% 

Barrett, 2004 Bioslope 72% 

Total: Cu=80%, 
Pb=87%, Zn=80%; 
Dissolved:Cu=68%, 
Pb=7%, Zn=72% 

  

Biesboer and 
Elfering, 2004 

Bioswale 50%, 70%*  
TP=22%,  
ortho-P=42% 
54%*,52%* 

 

Davis and Stagge, 
2005 

Bioswale 79% 
Cu=46%, Pb=35%, 
Zn=50% 

TKN=-2%, 
Nitrate=46% 
Nitrite=84%,  
Total P=-72%,  
Cl=-295% 

 

Deletic et al., 
2009 

Bioslope 35 – 90%  
Ortho-P=5 – 50%, 
Solid N=35 – 90%, 
14% for soluble N 

 

Yousef et al., 
1987 

Bioswale  
35 – 93% depending 
on metal 

  

Yu and Kaighn, 
1995 Bioslope 63.9% Zn= 87.6% -21.2 TP 59.3% COD 

BOD = Biological Oxygen Demand, COD = Chemical Oxygen Demand 
** = COD removal observed when influent concentration exceeds 80 mg/L,  
* = after check dam installation 

 

2.6 DESIGN PERFORMANCE FACTORS FOR BIOSLOPES AND BIOSWALES 

Several design factors affecting the performance of biofiltration devices have been identified in the 

literature. These factors include the characteristics of the soil/ filtration media used, the characteristics 

of the vegetation selected, and the geometry or physical dimensions of the constructed bioslopes and 

bioswales (Barrett et al., 1998b). Infiltration rate, which is affected by runoff intensity and volume, initial 

moisture content, vegetation, geometry, compaction, maintenance, and soil media has emerged as an 

important controlling mechanism for the performance of biofilters (Ahmed et al., 2015; Gulliver et al., 
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2014; Hatt et al., 2008). In terms of upstream design variables, geometry, vegetation, and filtration 

media can all exert control over swale performance. Vegetation and filtration media hold the most 

potential for innovation and improved performance due to the broad variation in available plants and 

filter media materials and will therefore be the focus of this review. 

2.6.1 Hydraulic Performance: Volume Reduction and Infiltration Capacity  

The rate of infiltration in biofilters controls stormwater runoff volume reduction capacity, the exposure 

of pollutants to potential sorbents, the ability of the soil media to act as a physical filter, and the 

recharge of groundwater (Claytor and Schueler, 1996; Larson and Safferman, 2008; Emerson and Traver, 

2008). Field infiltration rates have been found to be highly variable resulting in varying volume reduction 

capabilities in various biofilters (Yousef et al., 1987; Ahmed et al., 2015). Gulliver et al. (2014) provides a 

summary of swale volume reduction capabilities from several studies with a range of 9 – 100% 

reduction. 

Despite this variability, when achieved, volume reduction has been found to be a consistent and reliable 

way to reduce pollutant mass loads to receiving waters even when pollutant concentration is unaffected 

(Pitt and McLean, 1986). Yousef et al. (1987) also found strong correlation between volume reduction 

and the nutrient removal capabilities of six swales, presented in Figure 2.4. 

 

Figure 2.4 Percentage of pollutant removed versus volume infiltrated in bioswales (Yousef et al., 1987). Note: 

100% volume reduction results in 100% removal of all pollutants. 
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The strong correlation between pollutant removal capability and volume reduction by infiltration has led 

several researchers to recommend infiltration rate as a key design parameter when designing biofilters 

(Abida and Sabourin, 2006; Backstrom, 2003; Claytor and Schueler, 1996). Barr Engineering Company 

performed a simulation of swale design parameters using the MPCA-designed MIDS calculator to assess 

the effect on annual volume reduction. Of the five parameters tested, infiltration rate exhibited the 

highest degree of control on annual volume reduction percentage. Channel length also exhibits 

substantial control; however, for linear construction projects, channel length is a function of newly 

added impervious surface length. Accordingly, the loading rate will increase in proportion to channel 

length, making channel length potentially less influential. Side slope has a weak effect on annual volume 

reduction percentage. Design side slope will likely be limited by erosion more so than its role in 

infiltration optimization. The effect of Manning’s n values on infiltration in this model is in agreement 

with research by Backstrom (2003) that found that vegetation density is positively associated with TSS 

removal efficiency. A summary of recommended design infiltration rates is presented in Table 2.3. In 

most cases, a minimum design infiltration rate of 0.5 in/hr is recommended in biofiltration systems 

where freezing and clogging are not likely. 

Table 2.3 Recommended infiltration rates for stormwater BMPs in various locations. 

Reference 
Recommended Minimum 

Infiltration (in/hr) 
Notes 

Claytor and Schuler, 1996 0.25 in/hr Conservative to account for clogging 

EPA, 1999 0.5 in/hr Vegetated swale 

PAEPA, 2006 0.5 in/hr Vegetated swale 

Iowa Stormwater Management 
Manual, 2009 (Iowa DNR, 2009) 

0.3 in/hr Swales 

NRCS, 2005 0.5 in/hr Bioswales 

Stenlund, 2014b 1.02 in/hr Unless underdrain is provided 

MnDOT Construction Specs, 2014a 4.0 in/hr minimum Filter media 

 

While the rates presented in Table 2.3 are a recommended minimum, Yousef et al. (1987) indicate that 

higher rates are preferable. It is also recommended to use a factor of safety of 2 to 3 with infiltration 

rates to account for the negative impacts of freezing, clogging, and compaction (Abida and Sabourin, 

2006). In Minnesota, where freezing is common and salting and sanding of roadways increases sediment 

loads and potential for clogging, a minimum infiltration rate of 4 in/hr is required for filtration media 

topsoil (MnDOT Construction Specs, 2014a). A maximum infiltration rate of 8.3 in/hr is designated the 

Minnesota Construction Stormwater Permit to ensure water retention suitable for plant growth and 

contact time for pollutant removal. The Minnesota stormwater manual recommends infiltration rates 

for bioretention devices, including bioslopes and bioswales, should be between 1in/hr to 8 in/hr. These 

design guidelines reflect the consideration of cold weather climates and previous studies’ factor of 

safety recommendations. The impact of cold climates on infiltration is a function of the time and rate of 
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draining between wetting and freezing. Shorter drainage times in poorly draining soils result in an 

infiltration capacity of just 5% of thawed conditions. Soils that are more free-draining are able to retain 

an infiltration capacity of 30% of thawed conditions (Al-Houri et al., 2009). Compaction has been found 

to reduce infiltration capacity by 70 – 99% (Gregory et al., 2006). The detrimental effects of clogging and 

compaction are likely mitigated by plant root action (Deletic et al., 2009). For example, Ahmed et al. 

(2015) found that of six roadside swales analyzed in Minnesota and Wisconsin, the infiltration rates of 

the top 20 cm (7.9 in) of the surface soil layer were, on average, 2.8 times the published mean values for 

the soil classes identified.  

Road salts, swelling clays, and organic mineralization may reduce the filtration capacity of filter media. 

High salt concentrations, such as those produced by road salting, in stormwater discharging to soils 

adjacent to roadways can reduce soil permeability (Fay and Shi, 2012; Henry, 1991; Public Sector 

Consultants Inc., 1993; Ramakrishna and Viraraghavan, 2005). The reduction in permeability is due to 

sodium ions interacting with organic and inorganic particles causing them to break up and then wash 

into and plug the pore spaces of underlying soil layers. The decreased permeability ultimately leads to 

increased runoff and pollutant transport (Public Sector Consultants Inc., 1993). Kakuturu and Clark 

(2015) found that clogging and the subsequent reduction in permeability is greater in stormwater filter 

media with compost amendments than it is without compost. Literature on the effect of high salt 

concentrations on the infiltration rates of peat and muck specifically was not found.  

Clay content has also been found to have a negative impact on infiltration rate in soil media, especially 

when it is manually compacted (Sileshi et al., 2012). However, the high water holding capacity of clays 

results in significant swelling during wetting and shrinking during drying, which may alleviate the effects 

of compaction. In addition, the high water retention capacity of clays may provide enhanced compaction 

alleviation when subjected to freeze-thaw cycles (Jabro et al., 2012). These effects, combined with clays’ 

ability to provide enhanced pollutant removal due to a relatively high cation exchange capacity, indicate 

that some clay content in biofiltration media may be beneficial.  

Decomposition or mineralization of organic materials may also reduce infiltration capacity due to an 

increase in the fine fraction of the soil and a decrease in pore space. This effect is especially noted in 

peat, where the degree of decomposition can vary greatly between samples (Kellner, 2007). It is also 

important to note that once peat is removed from its subsurface oxygen-poor environment it may 

continue to decompose at a faster rate, leading to decreased infiltration rates over time (Stenlund, 

2014b). Huang et al. (2009) also found that a greater degree of decomposition results in lower hydraulic 

conductivities in organic soils, results which are supported by basic soil mechanics. Due to this effect, it 

is important to know the type and degree of decomposition of any peat, compost, or other organic soil 

used in a stormwater infiltration device in order to predict its hydrologic behavior. 

The percentage of organic material in a filter media has also been found to impact infiltration and water 

retention capacities (Sileshi et al., 2012). Laboratory studies by Sileshi et al. (2014) found that increasing 

percentages of peat resulted in increasing infiltration rates in peat-sand filters. Walczak et al. (2002) 

found that increasing the percentage of organic matter in a sand mixture from 0.1% to 23% resulted in a 

34 – 46% increase in water retention. Increasing organic material content over 23% showed diminishing 
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water retention returns. These findings indicate that an optimum organic content to maximize water 

retention exists at or around 23% depending on the material used. Faucette et al. (2007) also found that 

adding organic material in the form of yard-waste compost increases the water volume reduction 

capabilities of stormwater control devices.  

2.6.2 Vegetation 

Vegetation appears to play several important roles in the performance of stormwater biofilters. First, by 

slowing the velocity of runoff as it’s conveyed across a biofilter, vegetation allows for increased settling 

of suspended solids and infiltration (Backstrom, 2003; Gulliver et al., 2014). Backstrom (2002) found that 

the highest suspended solids removal rates occurred in swales with the densest vegetation. Additionally, 

Barrett (2004) found that solids removal performance of buffer strips declined rapidly when vegetation 

coverage fell below 75 – 80%. Second, vegetation has the ability to alleviate the effects of clogging and 

compaction, thereby maintaining higher infiltration rates (Read et al., 2008). This alleviation is due to 

plant root action and can maintain or improve infiltration rates of the soil, a previously discussed and 

important factor to performance (Deletic et al., 2009). Despite the benefits of planting, removal of the 

upper layer of soil is recommended as a regular maintenance procedure (Claytor and Schueler, 1996; 

Gulliver, 2014). Finally, plants and the microbes supported by plant root zones have the ability to uptake 

heavy metals and nutrients from stormwater that would otherwise discharge in receiving waters, 

inducing toxicity and eutrophication (Pham et al., 2012; Read et al., 2008).  

Native plants are the preferred vegetation for Minnesota roadsides due to their reduced maintenance 

needs (mowing and reseeding), increased roadside habitat and diversity, and their ability to reduce 

exotic and invasive weed infestations (Benik, 1998). Native plants are also recommended for 

stormwater treatment systems because of their hardiness and the wide range of ecosystem functions 

they provide (Shaw and Schmidt, 2003). A stormwater site seed mix (Stormwater Northeast 33-361) 

consisting primarily of native species adapted to northeast Minnesota is specified in the Seeding Manual 

2014 Edition (MnDOT, 2014b). 

There are limitations to plant establishment and growth in bioswales. Persistent inundation of bioswales 

significantly inhibits plant germination and growth, and shading by trees and shrubs negatively impacts 

growth (Mazer et al., 2001). Other environmental factors that can influence plant growth in bioswales 

include low water, sediment loads, pollutants and toxins, nutrients, salt, erosion, turbidity, invasive 

species, and herbivores (Shaw and Schmidt, 2003). 

While plant species vary in their abilities to treat stormwater due to their wide variety of physical and 

physiological characteristics (Read et al., 2008), in general the addition of vegetation reduces 

stormwater pollutant concentrations and loading rates. Comparing the effect of vegetation and soil 

media on the removal of nitrogen, phosphorus, and carbon, Henderson et al. (2007) found that the 

vegetated biofilters outperformed non-vegetated biofilters in gravel, sand, and sandy-loam soil media. 

The improvements in pollutant reduction listed in Table 2.4 were attributed to the uptake by plants and 

microbes living in the root zone. Henderson et al. (2007) also note that microbial and plant uptake 

results in a long-term stabilization of nutrients with limited risk of leaching during subsequent rainfall 
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events. In addition to the water quality benefits, vegetation also plays an important role in slope 

stability, as covered in the following section. 

Table 2.4 Increases in pollutant removal with the establishment of vegetation on biofilters (adapted from 

Henderson et al., 2007). 

 Percent Increase in Reduction with Addition of Vegetation 

Nutrient Gravel Sand Sandy-loam 

PO4  50  0  23 

NOx  219  347  384 

NH4  6  24  -1 

TP  54  4  16 

TN  75  67  52 

 

2.7 SOIL AMENDMENTS AND FILTRATION MEDIA 

An effective biofiltration soil media must be able to infiltrate stormwater at a high rate, support 

vegetative growth, provide water quality improvement, and maintain its structural integrity to prevent 

erosion and slope failure (Stenlund, 2014c). Where in situ soils do not perform these functions well, soil 

amendments are implemented (Washington Department of Transportation (WSDOT) Highway Runoff 

Manual, 2014). Currently recommended soil amendments for filtration media used in bioslopes and 

bioswales is composed of 60 – 80% clean sand and 20 – 40% organic compost by volume (MnDOT Specs 

3877.2.G, 2016). These recommendations are based on experience, showing the mixture will comply 

with the NPDES requirement to retain the first inch of stormwater runoff. The ability of salvage 

materials such as peat, muck, and taconite tailings, which are locally available in northern Minnesota, to 

meet this requirement is unknown. Study and characterization of these materials may reveal their ability 

to perform as well or better than the currently recommended sand and compost mix. In addition, the 

beneficial reuse of these materials as filtration media in bioslopes and bioswales has the potential to 

reduce project cost, increase stormwater treatment performance, and reduce waste material.  

2.7.1 Compost 

Compost has been established as the organic material of choice for biofiltration soil amendments due to 

its ability to aid in the adsorption of heavy metals, improve infiltration of stormwater, support plant 

growth, and reduce erosion (Seelsaen et al., 2006a; Maurer, 2009; Pitt et al., 1999). Compost is either 

added to a filter media bed or applied as a top-layer blanket (WSDOT, 2014). Green waste compost, 

derived from grass clippings, brush trimmings, and plant materials was shown to have superior metal 

absorption capabilities when compared to several other soil amendments including peat, coir, 

bonemeal, and woodbark (Nwachukwu and Pulford, 2008). The high adsorption capacity of compost is 

attributed to its relatively high cation exchange capacity and neutral pH (Khan et al., 2009; Claytor and 
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Schuler, 1996). Seelsaen et al.’s (2006b) laboratory batch studies demonstrate excellent removal 

efficiencies of copper, zinc, and lead for stormwater treated with a compost filter (Table 2.5). A three-

year field-monitoring study of a compost filter system summarized in Table 2.5 also found high removal 

efficiencies for several stormwater pollutants (CSF Treatment Systems Inc., 1994). 

Nwachukwu and Pulford (2008) noted that these removal efficiencies are negatively affected in the 

presence of high salt concentrations and other metal ions due to competitive sorption. Seelsaen et al. 

(2006b) reported that composts with smaller particle size had a larger surface area and thus greater 

sorption potential; however, Faucette et al. (2007) warn that if particle size distribution specifications 

are not met, total soil loss, suspended solids, and turbidity will be greater. These findings suggest that 

there is an optimal particle size distribution for stormwater treatment purposes that balances 

adsorption potential and erosion control. 

Table 2.5 Removal efficiencies of compost filters in lab and field experiments (adapted from Claytor and 

Schueler, 1996). 

Pollutant Setting Removal Efficiency 

Total Suspended Solids Field 95% 

Total Dissolved Solids  Field (-37%) 

COD Field 67% 

Total Phosphorus Field 41% 

Soluble Phosphorus  Field (negative) 

Organic Nitrogen  Field 56% 

Nitrate  Field (-34%) 

Cadmium Field No Data 

Lead Lab 97% 

Zinc Field, Lab 88%, 88% 

Copper Lab 93% 

Hydrocarbons Field 87% 

Copper Field 67% 

 

Infiltration capacity and volume reduction enhancements by compost amendments are reported 

throughout the literature. Faucette et al. (2005) compared compost blankets to “hydroseed” and silt 

fence systems and found that compost blankets reduced runoff volumes by five times that of the 

hydroseed treatment after three months and by 24% after a full year. Faucette et al. (2007) found that 

increasing percentages of compost in an erosion control blanket resulted in improved volume reduction 

and reduced runoff rates. A laboratory comparison of fourteen different erosion control practices 

showed that compost outperformed all other systems, with volume reductions between 29% and 94% 

for varying rainfall intensities (Faucette et al., 2009b). Glanville et al. (2004) also reported significantly 

enhanced infiltration capacity on compost-amended bioslopes. The ability of compost to improve 
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infiltration enhances the overall performance of biofilters by providing volume reduction and increased 

contact with adsorptive media.  

Yard waste compost soil amendments also have the ability to improve vegetative cover and reduce 

erosion. Faucette et al. (2006) reported that yard waste compost blankets produced 2.75 times the 

vegetative cover of hydroseed treatments while also controlling weed growth due to a lower 

mineralized nitrogen concentration in the yard waste compost compared to hydroseed or biosolid 

compost. Pitt et al. (1999) also found improved vegetative cover on compost-amended soils. Compost 

supports a healthy microbe population which improves nutrient availability to plants and soil aggregates 

that reduce soil erosion (Archuleta and Faucette, 2014; Rushton, 2001). Faucette et al. (2009a) found 

that compost blankets reduced soil erosion by 67 – 99% when compared to 14 other erosion control 

methods.  

The performance of compost-amended soils is heavily dependent on the quality of compost utilized 

(Archuleta and Faucette, 2014). Soil pH, moisture content, organic matter, particle size, biological 

stability, and initial pollutant concentrations should all be considered when using compost for 

stormwater treatment. Specified properties for MnDOT Grade 2 compost used as a soil amendment 

with the intention of improving pollutant removal, enhancing plant growth, reducing erosion, and 

providing volume reduction are presented in Table 2.6.  

Table 2.6 MNDOT Grade 2 Compost Requirements (MnDOT, 2014b). 

Requirement Range 

Organic matter content ≥ 30% 

C/N ratio 6:1 – 20:1 

pH 5.5 – 8.5 

Moisture content 35% – 55% 

Bulk Density 700 lb per cubic yard – 1600 lb per cubic yard 

Inert material* ≥ 3% at 0.15 in (4mm) 

Soluble salts ≤10 mmho per cm 

Germination test** 80% – 100% 

Screened particle size ≤3/4 (19mm) 

*Includes plastic bag shreds 
**Must list species used 

 

A potential issue associated with compost-amended soils is nutrient leaching. Evidence for nutrient 

leaching is mixed. Some studies report removal of nitrogen and phosphorus (Faucette et al., 2005; 

Glanville et al., 2004) while others note that leaching of nitrogen and phosphorus is possible (Gulliver et 

al., 2014; Lenth and Dugapolski, 2011; Faucette et al., 2007; CFS Inc., 1994). Excess nutrients have the 

potential to cause eutrophication in receiving waters, leading to suggestions by Faucette et al. (2005) 

that federal specifications for nutrient contents of soils used in stormwater management be developed. 

The Minnesota Stormwater Manual notes that adequately matured grass or plant feedstock compost 
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has less potential to leach nutrients than that made from biosolids or animal manure. Gulliver et al. 

(2014) suggest that phosphorus removal can be enhanced through the addition of iron-based soil 

amendments while others have found peat to be effective for nutrient removal, topics that will be 

explored in the following sections on peat and taconite tailings. 

Compost that has not been completely matured can be detrimental to plant growth. Maturity tests have 

been developed for evaluating compost to ensure its benefit to plants (University of Florida, 2011). 

Contaminants such as pesticides or other toxic substances can also be found in compost or other soils. 

Toxicity tests have been developed to determine their presence and effect on plant growth (ASTM, 

2014; US Composting Council, 2015). These tests generally consist of plant bioassays using seeds of fast-

growing plants such as lettuce or radish grown on the substrates to be evaluated. Plant growth 

characteristics such as seed germination, root elongation, and seedling vigor are compared to a control 

to determine the safety of these substrates. 

The Solvita® measurement system developed at the Woods End Laboratories is another more rapid 

method to determine compost maturity (Woods End Laboratories, 2016). With this method, compost 

biological activity is determined by measuring carbon dioxide (CO2) and ammonia (NH3) emissions from a 

sample enclosed in a sealed container. Specially formulated gel probes placed within the container react 

to the concentrations of CO2 and NH3 gases, resulting in a color change. After a 24-hour period, the gel 

color is compared with a color chart or read with a digital color reader to determine concentrations of 

these gases. High concentrations of CO2 and NH3 are indicators of immature, unstable compost. The 

Solvita® system can also be used to determine soil CO2 respiration, an indicator of soil health and 

potential productivity. 

2.7.2 Peat and Muck 

Peat is partially decomposed plant matter that is high in organic content and complex in chemical and 

physical structure. The elemental composition of peat consists primarily of carbon (50 – 60%), hydrogen 

(5 – 6%), oxygen (30 – 45%), and nitrogen (1 – 2%) (Kao and Lei, 2000). Peat is generally acidic in nature 

due to the presence of various functional groups in lignin that include alcohols, aldehydes, ketones, 

acids (such as humic acid and fulvic acid), phenolic hydroxides, and ethers (EPA, 1999; Gupta et al., 

2009). The use of peat for treatment of stormwater has high interest due to its low cost, high 

availability, high water holding and infiltration capabilities, good vegetative support, ability to improve 

soil properties, and its ability to filter and adsorb pollutants (Biesboer and Elfering, 2004). The ability of 

peat to remove pollutants from solution is thoroughly documented. Farnham and Brown (1972) found 

significant reductions of phosphorus and organic pollutants in municipal wastewater treated with a peat 

and sand filter. Galli (1990) reports high removal efficiencies for typical stormwater pollutants treated 

with a peat-sand filter as shown in Table 2.7. 
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Table 2.7 Pollutant removal efficiencies of peat-sand filters (Galli, 1990). 

Pollutant Removal Efficiency (%) 

Suspended Solids 90 

Total Phosphorus 70 

Total Nitrogen 50 

BOD 90 

Trace Metals 80 

Bacteria 90 

 

Numerous other studies have found peat to be effective for pollutant removal, primarily in heavy metal 

uptake, shown in Table 2.8 (Brown et al., 2000; Gundogan et al., 2004; Ringqvist et al., 2002; Kao and 

Lei, 2000). Several authors note that the ability of peat to capture heavy metals is dependent on pH with 

an optimal range of 3.5 – 8.5 (Pitt et al., 1997; Brown et al., 2000; Sharma and Forster, 1993; Crist et al., 

1996). In general, peat can remove 50% of heavy metals at high concentration and more than 90% at 

low concentrations (Sharma and Forster, 1993; Crist et al., 1996; Gündoğan et al., 2004; Al-Faqih et al., 

2008; Gupta et al., 2009; Izquierdo et al., 2009). The high metal-removal capability of peat is attributed 

to its high cation exchange capacity, buffering capacity, and high adsorptive surface area (Biesboer and 

Elfering, 2004). Metals are uptaken by peat through ion exchange, complexation, surface adsorption, 

and chemisorption (Crist et al., 1996; Brown et al., 2000; Gündoğan et al., 2004). The surface functional 

groups of peat such as aromatic carboxylates-COOH and phenolic-OH will react with metals through 

displacement of proton into water, as shown in Figure 2.5. 

 

 

Figure 2.5 Binding mechanism of peat with metal ions (Gupta et al. 2009). 
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Table 2.8 Summary of peat application on removal of metals, nutrients and organic matter in stormwater runoff. 

Chemicals Lab/field 
Pollutant removal 

efficiencies 
Filter 

material 
Inflow Reference 

Cu, Ni Lab Maximum adsorption 
capacity 17.6mg/g and 
14.5 mg/L for Cu and Ni 
respectively 

Peat moss Lab 
synthesized 
water 

Gupta et al., 
2009 

Organic 
chemicals 

Pilot plant 50 – 80% for BPA, 35% for 
PHCs, 63% for PAHs 

Peat moss Landfill 
leachate 

Kalmykova et 
al., 2014 

Cu Lab  22, 36.4, 43.7 mg/L for pH 
values of 4, 5, and 6, 
respectively 

Mineralized 
peat 

Lab 
synthesized 
water 

Izquierdo et 
al., 2009 

Cd, Cu, Ni, Zn Lab  Zn=28%, Cd=27%, Ni=24%, 
Cu=21% 

Peat-based 
sorbent 

Lab 
synthesized 
water 

Al-Faqih et al., 
2008 

Mg, Mn, Ca, 
Ni, Zn, Cd, Cu, 
Pb 

Lab At high concentration, 
uptake around 50% of Cd 
and Zn; at low 
concentration, remove 
90% of Cd and Zn 

Peat moss Lab 
synthesized 
water 

Crist et al., 
1996 

Cu Lab  Remove over 90% of Cu Herbaceous 
peat 

  Gündoğan et 
al., 2004 

Cr Lab  Highly dependent on pH, 
up to 100% removal at pH 
below 2.0 

Peat moss Lab 
synthesized 
water 

Sharma and 
Forster,1993 

N, P, BOD Field & lab  Very efficient removal of P 
and BOD in low 
concentration and high 
temperature, around 50% 
removal efficiency during 
winter. Higher removal 
efficiency in presence of 
vegetation and aerobic 
condition 

Peat moss, 
reed-sedge 

Wastewater 
from municipal 
sewage 
treatment 
plant 

Farnham and 
Brown, 1972 

 

Nitrogen and phosphorus are the primary nutrients in storm-water runoff, originating from atmospheric 

deposition, roadside fertilizer application, and transported solids (Haering et al., 2006). Dissolved 

nitrogen is generally present in the forms of NO3
-, NO2

-, NH4
+, NH3 and organic nitrogen. The high 

solubility of nitrogen chemicals results in low adsorption rates in peat. However, a vegetated filtration 

system may improve nitrogen removal by plant uptake processes. 
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Peat is very efficient in removing highly concentrated phosphorus such as is typically present in 

wastewater and agricultural runoff. The removal efficiency could be as high as 99% at low inflow rates 

and under aerobic conditions. Phosphorus concentrations in effluents could be as low as 0.01 mg/L 

under these circumstances (Farnham and Brown, 1972). Peat filtering system removes phosphorus 

probably by a combination of microbial assimilation, inorganic and organic retention, and adsorption 

processes (Farnham and Brown, 1972). The high carbon-to-phosphorus ratio (approximately 500 – 

700:1) can provide sufficient carbon sources for microbial organisms to convert inorganic phosphorus 

into organic phosphate complexes. Vegetation can further improve the immobilization of phosphorus by 

plant uptake. However, stormwater usually has low concentrations of phosphorus, generally ranging 

from 0.1 to 0.4 mg/L (Kayhanian et al., 2012). A mixture of peat with other iron or aluminum-rich 

materials will likely improve the removal efficiency since phosphorus can be strongly adsorbed on 

aluminum and ferric hydroxides and/or precipitate with calcium (LeFevre et al., 2014).  

The application of peat for removing stormwater organic matters was not found, possibly due to the low 

concentrations of organic chemicals in stormwater. Peat can remove phenol, PHCs, and PAHs from 

landfill leachate at the removal efficiencies of 50 – 80%, 35%, and 63%, respectively (Kalmykova et al., 

2014). However, landfill leachate usually has higher concentrations than stormwater. This removal 

efficiency may be much lower in stormwater treatment. 

The hydraulic properties of peat can be highly variably depending on the degree of decomposition 

(Grover and Baldock, 2013). Nichols and Boelter (1982) report hydraulic conductivities ranging from 

6.94×10-5 cm/sec to 3.89 ×10-2 cm/sec. In general, greater decomposition correlates to lower hydraulic 

conductivity (Pitt et al., 1997). Since peat continues to decompose after harvest and application, 

changing conductivity presents a potential issue for long-term performance of peat-amended 

bioinfiltration BMPs (Stenlund, 2014b). Therefore, more frequent maintenance or replacement of 

filtration materials may be required. It is also important to note that peats of different botanical origin 

decompose at different rates. Sphagnum peat decomposes three times faster than sedge peat when 

exposed to oxygen (Raviv et al., 1986). Plant derivation, moisture content, and compaction also affect 

peat’s hydraulic conductivity (Clark and Pitt, 1999). The impact of these factors means that peat’s 

physical and chemical structure, compaction, and decomposition status are important to its 

performance as a stormwater filtration media. 

Plant establishment and growth is important for nutrient uptake and erosion control (Nichols and 

Boelter, 1982; Johnson, 2000). Peat helps retain soil moisture, reduce bulk density, and improve 

microbial health, all of which aid in plant growth (Biesboer and Elfering, 2004; Pitt et al., 1997). Sloan et 

al. (2008) demonstrated that adding peat to sand significantly improved vegetative growth in a 

laboratory environment.  

The pollutant-removal capabilities, water-absorbing capacity, and soil-improving properties of peat 

make it a useful soil amendment for stormwater treatment filter media. In northern Minnesota, peat 

moss is often discarded as a waste product during road construction, making it readily available and 

affordable.  
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Muck is differentiated from peat, primarily by its degree of decomposition. Muck is a highly 

decomposed organic soil that is often excavated from construction sites due to its lack of structural 

integrity and low hydraulic conductivity (MnDOT, 2013). Since muck has limited use as a construction 

material, it is readily available at low cost. Research on muck for use as a soil amendment in stormwater 

treatment filtration media is limited, but due to its high organic content it may aid in the establishment 

of vegetation in sandy, inorganic soils. Sileshi (2013) also notes that the organic materials often have 

high cation exchange capacities that may improve the adsorption potential of a filter media.   

2.7.3 Taconite tailings  

The use of taconite tailings as an alternative stormwater filtration media offers several potential 

advantages including availability, favorable geotechnical properties, and enhanced phosphorus removal. 

Taconite tailings are readily available in northern Minnesota as an iron ore mining byproduct. MnDOT 

Materials Lab Supplemental Specifications for Construction (2016) requires that taconite tailings used 

for MnDOT projects be obtained from mines located westerly of a north-south line located east of 

Biwabik, Minnesota (R15W – R16W). Samples collected for this project will be obtained from mining 

operations that meet MnDOT requirements. It is estimated that the production of one ton of taconite 

pellets generates nearly an equal amount of course tailings, much of which are considered waste 

product (Zanko et al., 2003). The beneficial reuse of these tailings for stormwater filter media may offer 

a mutually beneficial solution to stormwater managers and the mining industry.  

The advantageous physical properties of taconite tailings include high strength and the ability to 

improve hydraulic conductivity when added to other soils (Lund, 2014; Zanko et al., 2003). These 

properties will improve the stability and infiltration capacities of soils used in bioslopes and bioswales. In 

addition to the favorable physical properties, the iron content of taconite tailings may improve the 

ability of stormwater filters to remove phosphorus. Erickson et al. (2007, 2010, 2012) demonstrated a 

significant increase in the removal of dissolved phosphorus from stormwater is possible when filters are 

amended with iron. Field application studies of iron-enhanced sand filtration trenches showed an 85 – 

90% reduction in phosphorus loads to stormwater ponds (Erickson et al., 2012). Moreover, heavy metals 

may bind to hydroxide iron and precipitate onto sorbent surface, consequently improving the removal 

of heavy metals from stormwater (Smith and Falls, 2001; Wu and Zhou, 2009).  

Though taconite tailings are not typically conducive to plant growth due to low nutrient content and lack 

of moisture retention, amendments with organic materials have shown that substantial vegetation 

growth is possible (Norland and Veith, 1995). Felleson (1999) found that as little as 10 to 22.4 metric 

tons/ha of organic material applied to bare, coarse taconite tailings was sufficient for establishing 

vegetative cover. Potential issues associated with taconite tailings include increased transportation costs 

due to high bulk density (Zanko, 2007).  

2.8 OPTIMIZING GEOTECHNICAL PROPERTIES OF FILTRATION MEDIA SOILS 

Effective bioslopes and bioswales must improve water quality, support plant growth, and maintain the 

physical properties necessary to prevent erosion. In many ways, the ability of these BMPs to meet 
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performance requirements are dependent on the geotechnical properties of the soil employed as a 

filtration media. Important parameters include hydraulic conductivity, response to compaction, and 

strength (Sileshi, 2013).  

The hydraulic conductivity and response to compaction can be optimized in a filtration media by 

maximizing the content of sand or other coarse-grained inorganics such as taconite tailings. Sileshi 

(2013) found that the negative impact on infiltration associated with compaction of soils was mitigated 

by increasing sand content in biofilter media. It was also found that the infiltration capacity of soils with 

high organic content and, in particular, peat was negatively affected by compaction. As previously 

discussed, the infiltration rate of filter media has a strong effect on performance and, therefore, the 

response to compaction of alternative filter media should be thoroughly characterized. Understanding 

the response to compaction will help optimize a filtration media mix design and help guide placement 

and maintenance procedures.  

Soil strength is important for slope stability. Strength can be optimized by maximizing permeability, 

particle angularity, gradation, and compaction while minimizing organic content (Coduto et al., 2013). 

While slope stability should be considered in the design and construction of bioslopes and bioswales, 

the performance of these BMPs is negatively affected by soil compaction (Sileshi, 2013). In addition, a 

lack of organic content reduces vegetative support and promotes erosion (Faucette et al., 2007). 

Ultimately, a useful bioinfiltration media mix design will have to balance strength requirements with 

growth support and erosion control requirements.  

2.9 CONCLUSION 

Bioslopes and bioswales are effective stormwater management BMPs suitable for meeting NPDES 

requirements that require the capture of the first inch of runoff from highway construction projects. The 

efficiency of bioslopes and bioswales to capture runoff and improve water quality is dependent on 

several factors, including filter media characteristics. Infiltration capacity, resistance to compaction, 

ability to support vegetation, erosion resistance, pollutant adsorption capacity, pH, and chemical 

composition are key to the performance of filter media used in bioinfiltration devices. These parameters 

can be optimized in alternative filter media through proper mix design to satisfy the biological, 

environmental, hydrological, and geotechnical performance goals of bioslopes and bioswales. 
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CHAPTER 3:  MATERIALS 

3.1 INTRODUCTION 

A number of treatment media sources for use in the research project were identified in MnDOT District 

1 or close proximity. The potential materials include compost, salvaged peat, muck, commercial peat, 

sand, and taconite tailings. Samples of sufficient volume for characterization and performance trials 

were collected in five-gallon pails in October and November 2015 (Table 3.1). Compost and taconite 

tailings samples were collected from recently stockpiled (2015) materials. Salvaged peat and muck were 

collected from stockpiles established during the Highway 53 reconstruction (2013). These stockpiles 

were covered with varying amounts of vegetation that had to be removed prior to sample collection. 

Commercial peat was donated by Premier Horticulture and was received in 3.8-cubic-foot compressed 

bales. Sand samples came from Arrowhead Concrete Works Inc. MnDOT Sand Pit 69511 in Solway 

Township, Minnesota. 

Table 3.1 Summary of filtration materials and their locations, collection date and methods. 

Filtration material Location Collection date 
Collection 
method 

Weather on collection date 

Compost 
WLSSD waste 
facility 

Oct. 30, 2015 Shovel 
Had relatively heavy rain the 
day before, cloudy on sample 
collection day 

Peat 1944 Hwy 53, 
Cook, MN 

Nov. 5, 2015 Shovel  
Had light rain the day before, 
and rain on the morning of 
sampling day 

Muck Nov. 5, 2015 Shovel 

Taconite tailing 
ArcelorMittal, 
Gilbert, MN 

Nov. 5, 2015 Shovel 

Commercial peat 
Premier 
Horticulture, 
Cromwell, MN 

Summer 2015 
Vacuum 
harvester 

Unknown 

Sand 
Solway Township, 
MN 

Fall 2015 
Bulk sample 
received 

N/A 

 

3.2 SAMPLE COLLECTION 

3.2.1 Compost 

Compost was purchased from the Western Lake Superior Sanitary District (WLSSD) yard waste 

management site located on Courtland Street off Interstate 35 at 27th Avenue West and the waterfront 

in Duluth, Minnesota (Figure 3.1). Compost was collected on October 30, 2015 (Figure 3.2). There was a 

light rain on October 27 (0.13 in), heavy rain on October 28 (0.62 in) and light rain on October 29 (0.10 

in) (NOAA, 2017). However, the compost was stockpiled, so the materials within the pile were relatively 

dry.  
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Figure 3.1 Overhead view of the WLSSD compost site located at the waterfront and 27th Ave W in Duluth, MN. 

 

Figure 3.2 Compost pile (left) in WLSSD and a close-up view of the compost samples (right). 

Compost 

 

The WLSSD compost originated from grass clippings, leaves, garden debris, brush, fresh-cut holiday 

trees, and small quantities of sod and dirt (WLSSD, 2015). WLSSD compost has been monitored and 

certified by the US Composting Council (Table 3.2). The samples collected were from piles that had fully 

completed the composting process and were considered “mature.” 
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Table 3.2 Characteristics of compost samples by US Composting Council (WLSSD, 2015). 

Compost Parameters Reported as (units of measure) Test Results Test Results 

Plant Nutrients: %, weight basis Not reported Not reported 

Moisture Content %, wet weight basis 44.3  

Organic Matter Content %, dry weight basis 62.2  

pH units 6.44  

Soluble Salts (electrical 
conductivity) 

ds/m (mmhos/cm) 11  

Particle Size or Sieve Size maximum aggregate size, inches 0.64  

Stability Indicator (respirometry) Stability Rating: 

CO2 Evolution mg CO2-C/g OM/day 9.1 Un-Stable 

 mg CO2-C/g TS/day 5.7  

Maturity Indicator (bioassay)   

Percent Emergence average % of control 100  

Relative Seedling Vigor average % of control 81.7  

Select Pathogens 

PASS/FAIL: per US EPA Class A 
standard, 40 CFR § 503.32(a) 

Pass Fecal coliform 

 Pass Salmonella 

Trace Metals 
PASS/FAIL: per US EPA Class A 
standard, 40 CFR § 503.3, Tables 1 
and 3 

Pass 
As, Cd, Cr, Cu, Pb, 
Hg 

 Mo, Ni, Se, Zn 

 

3.2.2 Peat and muck 

The peat and muck samples were collected from the "Tini Pit" north of Cook (1944 Highway 53, Cook, 

MN) on November 5, 2015 (Figure 3.3). The peat and muck were deposited there in January-February 

2013. They originally came from the Highway 53 road reconstruction project in the two-mile stretch just 

south of Cook. There was light rain on November 1 (0.07 in) and November 2 (0.06 in). It was dry on 

November 3 and 4, with light rain in the morning on November 5 (0.05 in). The project team had 

previously visited this site during the kick-off meeting on June 1, 2015. At that time, it was noted that 

the muck area had little to no vegetation but rich vegetation in the peat area (Figures 3.4 and 3.5). On 

the November sampling date, some plants were observed on the muck area, although it was still 

sparsely vegetated compared to the peat area. Surface vegetation was removed prior to sample 

collection. 
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Figure 3.3 Overhead view of the “Tini Pit” peat and muck sampling location north of Cook, MN. 

 

Figure 3.4 Summer (left) and fall (right) view of the peat and muck sites. The muck area did not have any 

vegetation in the summer and minimal vegetation in the fall. The peat area had dense vegetation cover 

throughout the growing season. 

peat 

muck 

W= ~300 ft 

L= ~ 1200 ft 
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Figure 3.5 Close-up view of muck (left) and peat (right) samples. 

 

3.2.3 Taconite tailings  

Taconite tailings are an iron ore processing by-product that is of a consistent grain size distribution. 

Tailings samples were collected from a site near Gilbert on November 5, 2015 (Figures 3.6 and 3.7), the 

same date as the peat and muck collection. For a previous project (Zanko et al., 2010), eight grab 

samples were collected from this location for grain size analysis and submitted to Precision Testing, Inc. 

in Virginia, Minnesota (Table 3.3). 
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Figure 3.6 Overhead view of the ArcelorMittal Minorca mine near Gilbert, MN. This is the origin of the taconite 

tailings, although samples were collected from a smaller stockpile off-site. 

 

Figure 3.7 Taconite tailing pile (left) and close view (right). 

 

Taconite 
tailing 
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Table 3.3 Taconite tailing gradation (Zanko et al., 2010). 

Product 4 -4 (-4.75mm) screened taconite fine aggregate (coarse tailings0 

Date Produced Apr-09 

Source ArcelorMittal Minorca Mine 

Pile Location Ulland Brothers ArcelorMittal Minorca – Gilbert site 

Tons 2,500 (approx.) 

Gradations run 8 

         Gradation 
U.S. Sieve 

Maximum 
% passing 

Minimum 
% passing 

Average 
% passing 

 Sieve 
interval 

Average 
per interval 

Interval 
Min 

Interval 
Max 

4 100.0 100.0 1000  +4 0.0 0 0 

8 90.0 87.1 88.6  4 x 8 11.4 10 13 

16 67.0 64.3 65.7  8 x 16 22.9 20 26 

30 44.0 42.5 43.3  16 x 30 22.4 20 25 

50 22.3 21.6 22.0  30 x 50 21.3 20 23 

100 8.6 8.1 8.3  50 x 100 13.8 13 15 

200 4.4 4.0 4.2  100 x 200 4.1 3 5 

     -200 4.2 0 5 

 

3.2.4 Commercial peat  

Horticultural Sphagnum moss peat was donated by Premier Horticulture, Inc. located west of Cromwell, 

Minnesota. The peat is field dried and vacuum harvested on Premier’s Black Lake Bog (Figure 3.8), then 

screened, compressed, and packaged into 3.8-cubic-foot bales at their packaging plant. The peat 

received was harvested during the 2015 field season. Premier’s company specifications for a similar peat 

are shown in Figure 3.9. 

 

Figure 3.8 Overhead view of the Premier Black Lake horticultural peat operation where the commercial peat 

samples originated. 

Commercial 
peat 
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Figure 3.9 Premier Horticulture Sphagnum peat specifications. 
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3.2.5 Sand 

Screened sand was purchased from Arrowhead Concrete Works Inc. for use in the filter media mixtures. 

Arrowhead Concrete Works is a distributor of sand sourced from MnDOT Pit number 69511 located in 

Solway Township near Saginaw, Minnesota (Figure 3.10). Sand gradation is provided in Figure 3.11 and 

Table 3.4. 

 

Figure 3.10 Map of sand source, MnDOT pit number 69511. 

 

Figure 3.11 Gradation curve for Solway Township Sand. 
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Table 3.4 Tabulated grain size distribution for Solway Township sand. 

Sieve No. Sieve Opening (mm) % Retained % Passing 

 4 4.75 0.9 99.1 

 10 2.000 18.2 81.8 

 20 0.850 43.5 56.5 

 40 0.425 66.4 33.6 

 100 0.150 95.1 5.0 

 200 0.075 98.7 1.3 
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CHAPTER 4:  METHODS 

4.1 INTRODUCTION 

This chapter provides a description of tests and procedures used to classify and characterize materials 

used as filter media for stormwater bioinfiltration devices. Materials studied include: commercial 

compost, commercial peat, salvaged peat, muck, sand, and taconite tailings. Tests were selected based 

on a review of the literature which identified important physical, chemical and biological properties. 

There are four main objectives of the tests: (1) to classify the study materials for aiding in the 

reproducibility of the study results; (2) to define the properties of the individual study media in order to 

predict their performance when applied in-situ; and (3) to inform the development of filter media mix 

designs that optimize the stormwater treatment performance in bioinfiltration BMPs. The performance 

of the new filter media mixtures was compared to existing compost based media mixtures as defined by 

the 2016 MnDOT General Construction Specifications Section 3877.2(G) “Filter Topsoil Borrow” and 

outlined in the section below.     

4.1.1 Current Filter Media Specifications  

MnDOT specifications (2016) for filter media topsoil call for a mixture of 60% – 80% sand meeting 

gradation requirements found in section 3126, “Fine Aggregate for Portland Cement Concrete” (Table 

4.1) and 20% – 40% Grade 2 compost as defined by specification 3890 (Table 4.2). This sand-compost 

mixture is designed to support plant growth, provide water quality enhancement, and filtration at a rate 

of “at least 4 in/h.” New filter media mixtures were designed and assessed using this specification as a 

reference point. In addition to the requirements in Table 4.2, Grade 2 compost must also be “humus-

rich, derived from the decomposition of leaves and yard wastes, and have a texture similar to shredded 

peat” (MnDOT, 2016). 

Table 4.1 Gradation requirements for fine aggregate (MnDOT, 2016). 

Sieve Size Percent Passing* 

⅜ in [9.50 mm] 100 

No. 4 [4.75 mm] 95 – 100 

No. 8 [2.36 mm] 80 – 100 

No. 16 [1.18 mm] 55 – 85 

No. 30 [600 µm] 30 – 60 

No. 50 [300 µm] 5 – 30 

No. 100 [150 µm] 0 – 10 

No. 200 [75 µm] 0 – 2.5 

* Percent passing by weight through square opening sieves. 
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Table 4.2 Summary of Grade 2 compost requirements (MnDOT, 2016). 

Requirement Range 

Organic matter content ≥ 30 % 

C/N ratio 6:1 – 20:1 

pH 5.5 – 8.5 

Moisture content 35% – 55% 

Bulk density 
700 lb per cu. yd – 1600 lb per cu. yd  
[415 kg per cu. m – 890 kg per cu. M] 

Inert material* < 3% at 0.15 in [4 mm] 

Soluble salts ≤ 10 mmho per cm 

Germination test** 80% – 100% 

Screened particle size ≤ ¾ in [19 mm] 

* Includes plastic bag shreds. 
** Germination test must list the species of Cress or lettuce seed used. 

 

4.2 INDIVIDUAL TREATMENT MEDIA CHARACTERIZATION 

4.2.1 Civil Engineering 

Individual treatment media was characterized in order to form filter media mix designs and provide 

comparative analyses to currently specified filter media (i.e., sand and compost). Knowledge of 

individual filter media is also necessary for the meaningful analysis of filter media mix performance with 

regard to its constituents. The civil engineering faction of this research team focused on relevant 

geotechnical and hydrological engineering properties such as: particle size distribution, soil moisture 

content, hydraulic conductivity, infiltration capacity and strength. The following sections describe the 

testing protocols for determining the geotechnical and hydrological properties. 

4.2.1.1 Classification 

Soil classification was conducted in order to aid in the identification of similar materials for use in the 

field or reproducibility in future laboratory tests. Taconite tailings, sand, and muck were classified 

according to ASTM D2487-11 Standard Practice for Classification of Soils for Engineering Purposes 

(Unified Soil Classification System; ASTM, 2011a). For the proper classification of muck, ASTM D2487-11 

requires the determination of the Atterberg limits. Atterberg limits were determined according to ASTM 

D4318 “Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils” (ASTM, 

2010b). 

MnDOT specifications for Grade 2 compost ensure proper identification, eliminating the need for further 

classification. Commercial compost from a MnDOT-certified distributor was tested by the U.S. 

Composting Council (Laboratory Number: 5050829-1/1) to ensure that properties are in compliance 

with a MnDOT Grade 2 compost classification. Non-compliance of any parameter will be reported. Peat 

will be categorized according to ASTM D4427-13, “Standard Classification of Peat Samples by Laboratory 
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Testing” (ASTM, 2013). ASTM D4427 requires the completion of several additional tests as summarized 

in Table 4.3. 

Table 4.3 Summary of tests required for classification of peat (ASTM, 2013). 

Parameter Standard 

Fiber Content 
ASTM D1997-13 Standard Test Method for Laboratory Determination of 
the Fiber Content of Peat Samples by Dry Mass 

Ash Content, pH 
ASTM D2974-14 Standard Test Methods for Moisture, Ash, and Organic 
Matter of Peat and Other Organic Soils 

Absorbency 
ASTM D2980-04 (2010) Standard Test Method for Volume Mass, 
Moisture-Holding Capacity, and Porosity of Saturated Peat Materials 

 

4.2.1.2 Particle Size Distribution 

Determination of the particle size distribution of all materials except peat was conducted according to 

ASTM D422-63 Standard Test Method for Particle-Size Analysis of Soils (ASTM, 2007). For peat, ASTM 

D2977-14 Standard Practice for Particle Size Range of Peat Materials for Horticultural Purposes was 

used. Particle size distribution is used both for soil classification and for MnDOT specification 

compliance.  

4.2.1.3 Moisture Content 

Moisture content of the study materials was determined according to ASTM D2216-10 “Standard Test 

Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass” (ASTM, 

2010a). A sample of the prepared media will be taken during testing for moisture content verification by 

ASTM D2216-10. 

4.2.1.4 Hydraulic Conductivity 

The saturated hydraulic conductivity of a soil is approximately equal to its long-term infiltration rate 

when subjected to high rainfall or runoff rates (Figure 4.1). It follows that the Minnesota Stormwater 

Manual recommends using field saturated hydraulic conductivity as the design infiltration rate for 

bioretention devices. The Minnesota Stormwater Manual also notes that air entrapment in soils under 

field conditions makes totally saturated flow unlikely thereby reducing infiltration rate. Due to this 

condition, laboratory tests for saturated hydraulic conductivity, which eliminate entrapped air, will likely 

result in a higher saturated hydraulic conductivity than what is expected for an in-situ saturated 

hydraulic conductivity. With consideration for this deviation from the field conditions, an accurate 

comparative analysis of the filter media is possible using laboratory saturated hydraulic conductivity 

testing.  
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Figure 4.1 Relationship between infiltration rate and saturated hydraulic conductivity (Jarrett, 2014). 

 

For the purposes of preliminary mixed media design and comparative analysis, the saturated hydraulic 

conductivity was used as a proxy for in situ infiltration rates. This allows for the use of well-established 

procedures and reproducible results. Results obtained from these tests can be used as a reference point 

for infiltration tests conducted in later stages of this project. In addition, a correlation of laboratory-

measured saturated hydraulic conductivity to in-situ performance is possible, if field data becomes 

available. To determine the saturated hydraulic conductivity, a falling or constant head test was 

performed depending on the soil particle size. Testing procedures for sand, taconite tailings, compost, 

and muck followed those outlined by Germaine and Germaine (2009). For peat, ASTM D4511-11, 

“Standard Test Method for Hydraulic Conductivity of Essentially Saturated Peat,” was used (ASTM, 

2011b).  

4.2.1.5 Strength Testing 

Soil strength testing was performed to provide comparative insight on the strength and stability of study 

materials as compared to sand and compost. Direct shear testing was conducted in accordance with 

ASTM D3080-04, “Direct Shear Test of Soils Under Consolidated Drained Conditions,” in order to 

determine the effective internal friction angle (φ’) and cohesion (c’).  
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4.2.2 Environmental Engineering 

Environmental experiments tested chemical properties and pollutant removal efficiency of individual 

filter media by laboratory batch and column leaching experiments. The parameters to be examined 

include pH, nutrient content (nitrogen, phosphorus), and heavy metal concentrations (copper, iron, 

lead, zinc). The soluble chemicals were extracted by deionized (DI) water to test chemical contents of 

filtration materials. To test the pollutant removal efficiency at steady condition, laboratory synthetic 

solutions were prepared to simulate stormwater runoff. The concentrations of chemicals in synthetic 

solutions are designed to match the major range of stormwater chemicals in Minnesota State and the 

national stormwater based on data from National Stormwater Quality Database (Pitt and Maestre, 

2015). The stormwater pollutants to be examined are nutrients (nitrogen and phosphorus) and heavy 

metals (copper, lead, and zinc).  

4.2.2.1 Synthetic Runoff Preparation 

The synthesized solution was prepared by dissolving NaNO3, NaH2PO4∙H2O, CuCl2∙2H2O, Pb(NO3)2 and 

Zn(NO3)2∙6H2O into deionized water to gain pollutant concentrations at five different levels (Table 4.4). 

Table 4.4 Chemical concentrations of solutions prepared for batch experiment. 

Solution ID 
Concentration 

level 
NO3, mg/L PO4, mg/L Cu, µg/L Pb, µg/L Zn, µg/L 

Deionized water L1* 0 0        0     0        0 

S001 L2** 7.70 5.71    1080 688    1182 

S002 L2 7.74 5.12   857 479    1102 

S003 L2 9.50 6.06   708 813    1094 

S004 L3 15.91 12.22    1844 1001    5274 

S005 L3 15.31 12.67    1552 1251    5136 

S006 L4*** 20.60 24.85    2961 2564    9991 

S007 L5*** 71.11 50.98    7076 5503 22597 

*DI water, to test soluble chemical properties of filter media 
**Minnesota maximum concentrations 
***National maximum concentrations 
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4.2.2.2 Batch Experiments 

Batch experiments were performed in 250 ml bottles by mixing 250 ml laboratory-synthesized solution 

and 2.5 g filtration material which was dried at 105 oC for 24 hours immediately before use. The mixture 

was shaken at 100 rpm for 24 hours (Figure 4.2) and vacuum filtered through 0.45 µm membrane. The 

supernatant was stored in 4 oC cooling room for nitrate and phosphate measurement by ionic 

chromatography (IC) or acidified by concentrated nitrate (trace metal grade) for metal measurement by 

Atomic Absorption Spectrometry (AAS).  

 

Figure 4.2. Mixture of synthesized stormwater and filtration materials was being shaken at 100 rpm. 

 

For each solution and filtration material mixture, three replicates were run at same time. Due to the 

space limit of the shaker, in each batch only nine samples (three types of mixture × three replicates of 

each type of mixture) were allowed to run. However, for each concentration level we needed to run a 

total of 15 samples (five types of filtration materials × three replicates of each material). That means 

each concentration level needed to be split into two batches to run in the shaker. Even though the 

concentrations of initial solution were designed to be the same at the same pollutant concentration 

level, the actual chemical concentrations of initial solutions among separated batches were slightly 

different due to variations in weighting chemicals. However, the variations between batches were 

smaller than the variations between concentration levels. We treated the mixtures from the same 

concentration level together to be compared with the solutions from other concentration levels. After 

24-hour shaking, we expected that the adsorption process reached equilibrium. The concentration 
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difference between initial solution and equilibrium solution was used to calculate the amount of 

chemicals adsorbed on filtration materials by Equation 4.1: 

 𝑞𝑒 =  
𝑉 × (𝐶0 − 𝐶𝑒)

𝑊
 (4.1) 

Where qe is the amount of chemicals adsorbed on filtration materials; V is the volume of solution, 250 

ml; C0 is the initial concentration of synthesized solution; Ce is the equilibrium concentration after 24 

hours shaking; and W is the weight of filtration material, 2.5 g. 

4.2.2.3 Column leaching experiment 

Leaching of metals and nutrients was evaluated to quantify the pollutant removal efficiencies of 

different filtration materials under dynamic conditions. Laboratory-synthesized solutions, which were 

designed to simulate the maximum pollutant contents in Minnesota stormwater (pollutant 

concentration level L2 in Table 4.4), was continuously applied to each column at around 0.1 in/hr, the 

approximate average rainfall rate in Minnesota. Because the slowest mist sprayer has a flow rate much 

higher than 0.1 in/hr, we controlled the inflow pump to run 15 seconds every hour to achieve a rough 

inflow rate of 0.1 in/hr. The experiment was conducted in 20 PVC columns (internal diameter: 3 in) in 

two batches in two separate weeks due to space limitations (Fig. 4.3). Each batch was performed for 5 – 

7 days in order to collect 5 – 8 250 ml bottle samples from each column. Chemical concentrations of 

inflow solutions in these two batches were slightly different (Table 4.5 for detailed inflow 

concentrations). The inflow and leachate solutions collected from columns were filtrated through 0.45 

µm membrane, and the chemical concentrations in the supernatant were measured in the laboratory. 

 

Figure 4.3 Column leaching experiment apparatus. This picture shows the first batch when 12 columns were 

used. 
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Table 4.5 Chemical concentrations of inflow solutions used for the leaching experiment. 

Column no. Cu, µg/L Pb, µg/L Zn, µg/L PO4, µg/L 

1-12 642 1036 777 4699 

13-20 560 1000 737 5290 

 

These PVC columns were filled with filtration materials at different volumetric proportions to a 6-inch 

depth. Each column is composed of 50% organic material and another 50% inorganic media (Table 4.6). 

Each type of media was designed to be three levels: 0%, 25%, and 50%.  

The filtration material compositions for the column leaching experiments were designed by factors. 

Here factors are the types of filtration materials and volume proportion. To evaluate the effects of 

factors, a multiple linear regression model was fitted by using material types and volumetric proportion 

levels (0%, 25%, and 50%) as predictors and leachate concentrations of pollutants as the response 

variable. If the model coefficient of material or volume percentage level was significant, we would 

conclude that the material or the volume percentage can significantly change leachate outflow 

response. During the experiment we separated infiltration materials into an organic group (muck + one 

of commercial peat, compost, and salvage peat) and an inorganic group (sand, taconite tailings), and 

each group had a total volume percentage totaling 50%. That means one material in each group (organic 

or inorganic group) can be predicted by other materials in the same group. For example, if the total 

volume percentage of salvage peat (or compost, or commercial peat) was 25%, we know that another 

25% of organic material should be muck. If one column was filled with 50% taconite tailings, there 

should be no sand in this column because the total volume proportion of taconite tailings and sand 

should be 50%. In order to avoid multicollinearity, one material of each organic or inorganic group must 

be dropped from the analysis. The coefficient for the dropped factor will be explained by the model 

intercept. In this study, we dropped “muck” and “sand” factors and used four other factors (compost, 

peat, commercial peat, and taconite tailings). The model fitting was performed in R 3.3.0 using the lm 

function in the basic R package. 
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Table 4.6 Volume percent of filtration materials used in each column for leaching experiment. 

Column 
No. 

Organic materials Inorganic materials 

Compost Muck Peat 
Commercial 

peat 
Taconite 
tailings 

Sand 

1  25 25   50 

2  25 25  25 25 

3   50  25 25 

4  25 25  50  

5   50   50 

6   50  50  

7 50    25 25 

8 25 25   25 25 

9 50     50 

10  50    50 

11 50    50  

12 25 25    50 

13  50   25 25 

14  50   50  

15  25  25  50 

16  25  25 25 25 

17    50 25 25 

18  25  25 50  

19    50  50 

20    50 50  

  

4.2.2.4 Chemical Measurement Procedure 

Chemical concentrations for solutions collected from batch and column leaching experiments were 

measured using standard laboratory test methods. Table 5 presents the standard procedures that were 

followed. 
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Table 4.7 Laboratory test methods (APHA, 2012; EPA, 1978). 

Parameters Measurement Type 
Equipment Model 

Number 
Standard Procedure 

pH pH meter   APHA standard 
method 4500 

Phosphate, 
nitrate 

Ion chromatography (IC) for 
solutions from batch 
experiment 
Colorimetric analyzer for 
phosphate from column 
experiment  

Metrohm 881 APHA standard 
method 4110 
 
EPA method 365.3 

Copper, iron, 
lead, zinc 

Atomic absorption 
spectrophotometry (AAS) 

Shimadzu AA-6300 APHA standard 
method 3110 

 

4.2.3 Biological 

Biological testing focused on the ability of study materials to grow and support vegetation.  

The selected compost, peat, and soil treatment media were evaluated using several tests to determine 

their potential to sustain plant growth. Preliminary CO2 respiration tests were conducted in containers 

to determine compost maturity and soil health. Standardized seed germination and seedling growth 

trials followed to determine any potential toxicity. Media passing these first tests were further 

evaluated in a greenhouse. Greenhouse studies were conducted on selected media using fast-growing 

plants such as radish and oats to determine their ability to support plant survival and growth. 

4.2.3.1 Compost Maturity and Soil Respiration 

The Solvita® measurement system developed at the Woods End Laboratories is a rapid method to 

determine compost maturity (Woods End Laboratories, 2016). With this method compost biological 

activity is determined by measuring carbon dioxide (CO2) and ammonia (NH3) emissions from a sample 

enclosed in a sealed container. Specially formulated gel probes placed within the container react to the 

concentrations of CO2 and NH3 gases resulting in a color change. After a 24-hour period, the gel color is 

compared with a color chart or read with a digital color reader to determine concentrations of these 

gases. High concentrations of CO2 and NH3 are indicators of immature, unstable compost. The Solvita® 

system can also be used to determine soil CO2 respiration, an indicator of soil health and potential 

productivity. 

Compost, peat, and soil media selected for this project were evaluated using the Solvita® measurement 

system. Three replications of each treatment media were analyzed. A digital color reader was used to 

determine concentrations of CO2 and NH3 gases. Results for compost and other media were compared 
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to tables provided by Solvita® to evaluate compost maturity, determine soil respiration activity, predict 

potential nutrient mineralization, and assess if media is suitable for plant establishment and growth. 

4.2.3.2 Seed Germination and Growth 

In addition to the Solvita® measurement system, compost, peat, and soil media were evaluated using 

plant bioassays. Compost that has not been completely matured can be detrimental to plant growth. 

Seed germination maturity tests have been developed for evaluating compost to ensure its benefit to 

plants (University of Florida, 2011). Contaminants such as pesticides or other toxic substances can also 

be found in compost or other soils. Toxicity tests have been developed to determine their presence and 

effect on plant growth (ASTM, 2014; US Composting Council, 2015). These tests generally consist of 

plant bioassays using seeds of fast growing plants such as lettuce or radish grown on the substrates to 

be evaluated. Plant growth characteristics such as seed germination, root elongation, and seedling vigor 

are compared to a control to determine the safety of these substrates. For this study, several plant 

bioassays were conducted to assess compost, peat, and soil media suitability for plant growth.  

4.2.3.3 Phytotoxicity Testing 

The “suitability to grow” test is currently used by MnDOT to assess media for plant growth potential 

(Stenlund, 2015). In this two-part test, glass quart canning jars are half filled with moistened media. A 

good loam topsoil or commercial soil-less mix is used as a control. In the first part of the test, a filter 

paper is placed on the media surface and 10 – 25 seeds of a fast-growing plant such as lettuce are 

placed on top of the filter paper. The jar is then sealed and left at constant temperature in a growth 

chamber for 2 – 7 days. At a given end point, the number of seeds that have germinated are counted 

and compared to the control. Three replicates of each media were tested. 

The second part of the test is a repeat of the first, with the filter paper omitted and the jar left 

uncovered. The seedlings are observed to determine germination and unusual leaf curling, tip browning, 

or stunting compared to the control that may indicate immature compost or other phytotoxic 

substances in the media. 

4.2.3.4 Greenhouse Trials 

Greenhouse trials were conducted to more definitively determine the ability of the compost, peat, and 

soil treatment mixtures to support vegetation on bioslopes/bioswales in field applications. Mixtures 

were placed in containers and seeded with fast-growing radish and oats. At least three replicates of each 

mixture were tested. The containers were randomly placed in a greenhouse and watered regularly to 

ensure moisture conditions suitable for plant growth. Monitoring included plant germination and total 

root and shoot dry weight.  
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4.3 CONCLUSION  

Chapter 4 outlines the methods that were used to characterize media for water retention and treatment 

in stormwater BMPs. Methods were selected on the basis of reproducibility and applicability to various 

media. The proposed treatment media mixtures were evaluated using the selected tests to determine 

their infiltration capacity, pollutant removal capability, and ability to support vegetation. 
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CHAPTER 5:  LABORATORY RESULTS AND DISCUSSION 

5.1 INTRODUCTION 

Chapter 5 provides results classifying and characterizing materials used as filter media for stormwater 

bioinfiltration devices. Physical, chemical and biological properties, and performance in stormwater 

treatment of five filtration materials (compost, commercial peat, salvaged peat, muck, and taconite 

tailings) were evaluated through laboratory experiments. Media characterization was summarized based 

on civil engineering, environmental engineering, and biological disciplines.  

5.2 CIVIL ENGINEERING 

Individual treatment media was characterized in order to inform filter media mix design and provide a 

comparative analysis to currently specified filter media, i.e., sand and compost. Knowledge of individual 

filter media is also necessary for the meaningful analysis of filter media mix performance with regard to 

its constituents. The civil engineering portion of this research focused on relevant geotechnical and 

hydrological engineering properties such as particle size distribution, compaction characteristics, soil 

moisture content, and hydraulic conductivity. The following sections describe the testing protocols for 

determining the geotechnical and hydraulic properties. 

5.2.1 Classification 

Soil classification was conducted in order to aid in the identification of similar materials for use in the 

field or reproducibility in future laboratory tests (Table 5.1). Taconite tailings, sand, and muck were 

classified according to ASTM D2487 (ASTM, 2011). Atterberg limits were determined in accordance with 

ASTM D4318 (ASTM, 2010b). Liquid and plastic limits were determined to be 64% and 38%, respectively.  

Table 5.1 United Soil Classification System (USCS) soil classification of the tested biofilter materials. 

Material USCS Classification 

Taconite Tailings Well-graded sand (SW) 

Sand Poorly-graded sand (SP) 

Muck Sandy organic clay (OH) 

Peat Pt 

 

MnDOT specifications for Grade 2 compost ensure proper identification, eliminating the need for further 

classification. Commercial compost from a MnDOT-certified distributor was tested by the U.S. 

Composting Council (Laboratory Number: 5050829-1/1) to ensure that properties are in compliance 

with a MnDOT Grade 2 compost classification. Peat was categorized as sapric, high ash, slightly acidic, 

slightly absorbent peat according to ASTM D4427 (ASTM, 2013). ASTM D4427 required the completion 

of several additional tests as summarized in Table 5.2.  
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Table 5.2 Summary of test results for classification of peat (ASTM, 2013). 

Parameter Standard Results 

Fiber Content 
ASTM D1997-13 Standard Test Method for Laboratory 
Determination of the Fiber Content of Peat Samples by Dry 
Mass 

32% 

Ash Content, pH 
ASTM D2974-14 Standard Test Methods for Moisture, Ash, and 
Organic Matter of Peat and Other Organic Soils 

61%, 6.5 

Absorbency 
ASTM D2980-04 (2010) Standard Test Method for Volume Mass, 
Moisture-Holding Capacity, and Porosity of Saturated Peat 
Materials 

204% 

 

5.2.2 Particle Size Distribution 

Determination of the particle size distributions (Figure 5.1) of taconite tailings, sand, and muck were 

conducted according to ASTM D422. The uniformity coefficient (Cu), coefficient of gradation (Cc), percent 

finer than the # 200 sieve, and effective diameter at 10%, 30%, and 60% passing (D10, D30, & D60, 

respectively) of sand and taconite are presented in Table 5.3. Particle size distributions were used both 

for soil classification and for MnDOT specification compliance.  

 

Figure 5.1 Particle-size distributions for sand, muck, and taconite tailings. 
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Table 5.3 Grain-size parameters for sand and taconite tailings. 

 D10 (mm) D30 (mm) D60 (mm) Cu Cc 
% finer than #200 

sieve 

Sand 0.18 0.39 0.98 5.60 0.89 1.26 

Taconite Tailings 0.17 0.45 1.20 7.06 0.99 3.91 

 

5.2.3 Compaction Characteristics 

Results from the standard Proctor test for the determination of relative density and optimum moisture 

contents (Table 5.4) indicate similarity between taconite tailings and sand (Figure 5.2). Peat and 

compost are also similar with a relatively low maximum dry density. Peat was tested at seven different 

moisture contents and was found to have a maximum density of 5.7 kN/m3 at an optimum moisture 

content of 75%. As the moisture content of peat diverged from 75%, density decreased to between 4.5 

and 5 kN/m3 (Figure 5.3). Muck had the highest maximum dry density, at 13.4 kN/m3, of the three 

organic soils tested (Figure 5.4). 

Table 5.4 Maximum dry density and optimum moisture content of individual biofilter media. 

 Maximum Dry Density (kN/m3) Optimum Moisture Content (%) 

Sand 19.1  13% 

Taconite Tailings 19.4  8% 

Compost 6.5  35% 

Peat 5.7  75% 

Muck 13.4  20% 

 

Figure 5.2 Standard Proctor compaction curves for sand and taconite tailings. 
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Figure 5.3 Standard Proctor compaction curves for peat and compost. 

 

Figure 5.4 Standard Proctor compaction curves for muck. 
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5.2.4 Hydraulic Conductivity and Water Holding Capacity  

The hydraulic conductivity at 85% of maximum dry density was determined by constant head test (ASTM 

D2434) for taconite tailings and sand. Muck, peat, and compost were also tested at a density equal to 

85% of the maximum dry density using a falling head test (Germaine and Germaine, 2009) (Table 5.5). 

Preliminary results show that taconite tailings have a higher conductivity than sand. The hydraulic 

conductivity of peat is higher than that of compost by two orders of magnitude. This may be attributed 

to the fibrous structure of peat, which increases the amount and connectivity of pores in the soil 

structure. Muck was observed to have a relatively low conductivity, which is consistent with its high 

fines content.  

Table 5.5 Saturated hydraulic conductivity of individual biofilter media. 

Media Saturated Hydraulic Conductivity (cm/sec) 

Sand 6.0*10-3 

Taconite Tailings 1.0*10-2 

Compost 4.5*10-5 

Peat 7.7*10-3 

Muck 7.0*10-6 

 

Construction specifications (MnDOT, 2016) call for a mixture of 60 – 80% sand with 20-40% MnDOT 

Grade 2 compost. The hydraulic conductivity of these specified mixtures served as upper and lower 

bound performance criterion. Two alternative media mixtures were designed to contain a 50:40:10 ratio 

of inorganic aggregate, peat, and muck. Results from the constant head tests, shown in Table 5.6, 

indicated that the hydraulic conductivity of sand-compost mixtures can be matched using alternative 

media. These preliminary results demonstrate the ability of alternative filter media to meet hydraulic 

conductivity performance standards. 

Table 5.6 Saturated hydraulic conductivity of biofilter media mixtures. 

Media Mixture Saturated Hydraulic Conductivity (cm/sec) 

40% Sand, 60% compost 1.5*10-4 

50% Sand, 40% Peat, 10% Muck 1.7*10-4 

50% Taconite Tailings, 40% Peat, 10% Muck 1.3*10-3 

60% Sand, 40% compost 1.5*10-3 

 

In addition to standard constant and falling head experiments, laboratory infiltration experiments were 

conducted to determine the infiltration curve into dry media mixtures. These experiments were 

conducted to demonstrate unsaturated hydraulic conductivity rates and to study how the observed 

hydrophobia of dry peat affects infiltration and water absorption. Results from these experiments 

shown in Figure 5.5 indicated that peat is more effective than compost at improving infiltration rates 
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and infiltration capacity when added as an amendment to sand in a ratio of 50:50 sand to compost or 

peat. 

 

Figure 5.5 Infiltration rate and capacity of 50:50 mixtures of sand and peat or compost at 85% relative density. 

  

Moisture holding capacity of the study materials was examined at saturation and at field capacity, 

defined by applying 33 kPa pressure until steady-state outflow is reached, using a flow-through pressure 

cell apparatus. This test was conducted according to procedures outlined by the University of 

Connecticut Department of Civil and Environmental Engineering (Figure 5.6). Cells containing soil 

compacted to 85% relative density were deemed saturated when steady-state flow was reached during 

hydraulic conductivity tests. Once soil was saturated, the moisture content was calculated by mass. 

Next, air at a pressure of 33kPa was applied to the cell until steady-state outflow was reached, at which 

point moisture content was determined according to ASTM D2216-10 (ASTM, 2010a). Results from 

individual media tests show that peat holds more moisture than muck or compost and that peat and 

compost have a similar ability to increase the moisture-holding capacity of sandy soil.  
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Figure 5.6 Water-holding capacity of study materials at saturation and field capacity. 

 

5.2.5 Conclusions 

Individual media including sand, taconite tailings, compost, peat, and muck were tested for grain-size 

distribution, compaction characteristics, hydraulic conductivity, and moisture-holding capacity. Media 

mixtures were then mixed by volume and tested for hydraulic conductivity, infiltration rate, infiltration 

capacity, and moisture-holding capacity for comparison to currently specified mixtures of sand and 

compost. From these preliminary results, the following conclusions were drawn. 

Sand used for this research is poorly-graded (SP), while the taconite tailings are well-graded (SW). 

Taconite tailings and sand have maximum dry densities of 19.4 kN/m3 and 19.1 kN/m3, respectively. The 

hydraulic conductivity of sand was 6.0*10-3 cm/sec, while taconite tailings had a conductivity of 1.0*10-2 

cm/sec. Due to their similar physical characteristics, the hydraulic and geotechnical performance of 

these materials is similar, making them interchangeable from a civil engineering perspective.  

Peat materials performed as well or better than compost in all hydraulic and geotechnical tests. Peat has 

a high moisture-holding capacity, hydraulic conductivity, and performs similarly to compost when added 

as an amendment to sand. While the peat samples used in this research performed well, previous 

literature reviews have revealed large variability in peat’s hydraulic properties depending on origin and 

degree of decomposition. Due to this variability, it may be prudent to evaluate peat materials on a case-

by-case basis when used in stormwater treatment devices.  
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The material described as muck and used in this research classifies according to the USCS as sandy 

organic clay. Muck has deleterious qualities that preclude its recommendation for use in biofilter media 

mixtures including a low hydraulic conductivity and low workability. The high clay content of the studied 

muck material impedes infiltration, which may increase the probability of Hortonian overland flow when 

used in bioslopes. Additionally, muck material was found to be difficult to mix, adheres to equipment, 

and when dried becomes hard and impermeable. 

5.3 ENVIRONMENTAL ENGINEERING 

Chemical content of filter materials will affect leachate water quality, nutrient supply for plants, and 

pollutant removal efficiency. To evaluate the pollutant removal efficiencies or potential release of 

contaminants from studied filtration materials, two types of environmental experiments, including batch 

and column leaching experiments, were performed in the laboratory to characterize chemical properties 

and pollutant adsorption capacities under static and dynamics conditions for individual and mixed 

filtration materials. The environmental parameters examined in the experiments included pH, nutrient 

content (nitrate, phosphate), and heavy metal concentrations (copper, iron, lead, zinc). 

5.3.1  Batch experiments  

The synthesized solution was prepared with laboratory chemicals such as NaH2PO4∙H2O. The proton 

contained within NaH2PO4∙H2O added acidity to the solution; the resulting pH values of initial solutions 

were between 4.47 and 5.4 and decreased with increasing concentration levels. However, the acidity of 

the initial solution was sufficiently neutralized by compost, muck, salvage peat, and taconite tailings, and 

the pH values of mixture solutions after 24-hour shaking were between 6 and 9 (Figure 5.7), a pH range 

required by water standards. Commercial peat was acidic as reported, and the solution pHs were around 

4. 

To examine the adsorption capacity of each filtration material, the concentrations of studied chemicals 

in the solutions were compared before and after 24-hour shaking. The selected five filtration materials 

did not exhibit significant effect in removing nitrate and phosphate (Figure 5.8). In contrast, compost 

released a large amount of nitrate (>90 mg/L) and a small amount of phosphate (<10 mg/L). Salvaged 

peat also exported a little nitrate (~ 3 mg/L) but can adsorb a little phosphate (~9 mg/L) at a high inflow 

concentration.  
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Figure 5.7 The pH of the mixture of synthesized solutions and filtration materials after shaking for 24 hours at 

100 rpm. 
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Figure 5.8 Concentrations of nitrate and phosphate before (initial solution bar in the chart) and after 24-hour 

shaking for the mixture. 

 

Compared to the nutrient removal, most materials can significantly remove metals from water. In 

general, more than 80% of metals were removed from the solution by peat and compost, and muck can 

remove around 50% of metals (Figure 5.9). Salvaged peat had the largest adsorption capacity of copper 

and zinc compared to other materials. Commercial peat and compost had good performance in retaining 

metals, and muck had intermediate removal capacities for these two metals. Taconite tailings cannot 

adsorb copper and zinc but had the largest retention capacity of lead, possibly due to co-precipitation by 

iron hydroxide. 
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Figure 5.9 Concentration of Cu, Pb, and Zn before (initial solution bar in the chart) and after 24-hour shaking for 

the mixture. Pollutant concentration level represents the initial solution concentration level in Table 4.4. 
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5.3.2 Leaching experiments  

Chemical concentrations of leachate solutions collected from columns composed of a mixture of organic 

and inorganic filtration materials were measured and compared with inflow concentrations to 

determine chemical retention capacities under dynamic conditions. 
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5.3.2.1 Leachate color and suspended solids 

Each leachate collected was visually examined to evaluate the effluent color and roughly compare the 

suspended solids content. Outflow from compost typically had a large amount of suspended solids, and 

the solution appeared dark brown in color (Figure 5.10). Muck exported clay material into the leachate, 

leading to relatively high suspended solids concentrations. Both salvaged peat and commercial peat did 

not export much solids to the outflow, but the high organic acid content in commercial peat resulted in 

a yellow outflow. Iron in taconite tailings caused the leachate color to be red. 

Figure 5.10 Typical leachate solutions after flowing through different filtration materials. 

5.3.2.2 Time trend 

The leaching experiment was designed to collect 5 – 8 bottles of leachate. Concentrations of Cu, Zn, and 

PO4 in leachate samples fluctuated but generally declined over time (Figures 5.11 and 5.12). Lead 

concentrations in the outflow were very low, even below the detection limit (1 µg/L); therefore, lead 

was excluded from the analysis. Concentrations of copper and zinc in the outflow of several columns 

may have reached a stable level, while most of the columns did not have stable outflow concentrations 

during the experiment period. Because there were no obvious stable outflow concentrations achieved 

for most columns, the chemical concentrations were averaged across the time period to be used to 

evaluate treatment efficiencies of different materials. 
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Figure 5.11 Changes of Cu (black) and Zn (red) concentrations in leachate solutions along with accumulated 

outflow collected from 20 columns. Column compositions are shown in graph titles as volume percentages and 

abbreviations (C=compost, CP=commercial peat, M=muck, P=peat, T=taconite tailing, S=sand) for filtration 

materials.  
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Figure 5.12 Changes of PO4 concentrations in leachate solutions along with accumulated outflow collected from 

20 columns. Column compositions are shown in graph titles as volume percentages and abbreviations 

(C=compost, CP=commercial peat, M=muck, P=peat, T=taconite tailing, S=sand) for filtration materials. 
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5.3.2.3 Adsorption efficiencies under dynamic conditions 

The concentrations of Cu, Zn, and PO4 (Figures 5.11 and 5.12) demonstrated a remarkable difference 

among columns, especially the outflow from columns containing compost (Columns 7, 8, 9, 11, and 12), 

which tended to have the largest concentrations. Multiple regression models were developed by using 

filtration types and volumetric proportion of each material as predictor variables and outflow chemical 

concentrations as response variables. We averaged the outflow chemical concentrations for each 

column to gain 20 rows of data (one row per column, compositions shown in Table 4.6 in Chapter 4) and 

used the averaged values as response variables to be linked with the composition of filtration materials 

in each column to perform the multiple regression modeling. 
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Model fit coefficients are provided in Table 5.7. The baseline (the intercept in the model) for each 

column is the concentration of outflow from column with 50% muck and 50% sand. Muck was used as 

the baseline here because the filtration materials in columns were comprised of muck and one other 

organic material. Negative or positive coefficients for factors need to be added with the intercept to get 

predicted values for filtration materials with compositions listed for that factor. For example, the pH of 

outflow from the column filled with compost (25%) +muck (25%) + sand (50%) is expected to be 8.44 – 

0.18 = 8.26.  

Table 5.7 Parameter coefficients of linear regression models for pH, Cu, Zn and PO4 concentrations (unit: µg/L) in 

leachate solutions. Significant coefficients (p<0.05) are in bold. 

Factor pH Cu Zn PO4 Compositions in factor 

(Intercept) 8.44 22.43 -2.45 -99.22 muck=50%,sand=50% 

Compost25 -0.18 96.98 124.99 3024 compost=25%,muck=25%, sand=50% 

Compost50 -0.52 95.93 401.70 13153 compost=50%, sand=50% 

Peat25 0.01 -7.88 0.91 -31.93 peat=25%, muck=25%, sand=50% 

Peat50 -0.39 -8.91 0.01 -37.42 peat=50%, sand=50% 

Commercial.peat25 -0.15 -9.71 -5.20 -14.18 
commercial peat=25%, muck=25%, 
sand=50% 

Commercial.peat50 -2.09 -3.70 -2.40 220.99 commercial peat=50%, sand=50% 

Taconite.tailings25 0.23 2.00 15.93 178.09 
muck=50%, taconite tailings=25%, 
sand=25% 

Taconite.tailings50 0.26 -9.02 10.38 288.18 muck=50%, taconite tailings=50% 

  

Commercial peat can significantly reduce leachate pH; however, the reduction was dependent on the 

amount of commercial peat used. If 25% or less commercial peat was combined with muck, no 

significant pH reduction occurred. Solution pH values for leachate from compost or peat were slightly 

but insignificantly smaller than outflow from muck, while taconite tailings can increase outflow pH when 

compared with sand.  

Leachate solutions from compost have significantly higher copper, zinc, and phosphate than all other 

organic materials (muck, peat, commercial peat). Comparing the parameter coefficients, we roughly 

estimated that the copper and zinc concentrations for compost leachate should be above 100 µg/L but 

below inflow concentrations (Cu ~ 500 µg/L and Zn ~ 700 µg/L). However, the effluent PO4 

concentration from column with 50% compost was 13 153 – 99.22=13 054 µg/L, which was significantly 

higher than inflow PO4 concentration (around 5000 µg/L). The significant higher outflow PO4 

concentration indicated that decomposition of compost was exporting additional phosphate into the 

effluent. The high amount of phosphate export from compost indicates that compost application into 

stormwater treatment should be limit to small ratio, such as 7 – 10% as suggested by Minnesota storm 

manual.  

Because of the large variation of data from compost columns, the effects of other filtration materials 

may be masked. Therefore, we excluded the columns with compost (five columns) and re-did multiple 
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regression analysis for the remaining 15 columns. Again, commercial peat can significantly reduce 

outflow pH when 50% of commercial peat is included in the filtration materials (Table 5.8). Taconite 

tailings can reduce copper and zinc concentrations in leachate solution — in other words, enhance the 

metal removal. Taconite tailings also showed potential to enhance PO4 removal as shown by negative 

coefficients, even though the coefficients are insignificant.  

Table 5.8 Parameter coefficients of linear regression models for pH, Cu, Zn, and PO4 concentrations (unit: µg/L) 

in leachate solutions (n=15). Different from the previous table, the solutions collection from compost-filled 

columns were excluded and the variable of compost factor was excluded from analysis. Significant coefficients 

(p<0.05) were in bold. 

Factor pH Cu Zn PO4 Compositions in factor 

(Intercept) 8.39 27.95 9.29 150.96 muck=50%,sand=50% 

Peat25 0.01 -7.88 0.91 -31.93 peat=25%, muck=25%, sand=50% 

Peat50 -0.39 -8.91 0.01 -37.42 peat=50%, sand=50% 

Commercial.peat25 -0.15 -9.71 -5.20 -14.18 
commercial peat=25%, 
muck=25%, sand=50% 

Commercial.peat50 -2.09 -3.70 -2.40 220.99 commercial peat=50%, sand=50% 

Taconite.tailings25 0.31 -10.04 -3.91 -152.17 
muck=50%, taconite tailings=25%, 
sand=25% 

Taconite.tailings50 0.34 -13.56 -5.03 -132.10 muck=50%, taconite tailings=50% 

 

5.3.2.4 Competitive adsorption of copper and zinc on organic materials  

Removal efficiencies of metals are largely determined by the type of organic materials. Zn 

concentrations were compared with Cu concentrations in leachate samples for each column (Fig. 5.11). 

In general, Zn concentrations were higher than Cu concentrations after passing through columns with 

compost. In contrast, more copper was leached from other organic materials, including commercial 

peat, salvaged peat, and muck. This difference indicated that compost may have a higher affinity to 

copper than zinc, while peat or similar materials are preferential for zinc than copper.  

5.3.2.5 Potential release of iron from compost and taconite tailings 

The application of taconite tailings brings one concern — the potential release of Fe. In Minnesota, the 

total iron concentration limit is 300 µg/L for secondary drinking water (class 1B water). To determine 

how much Fe would be released from taconite tailings, we measured Fe concentrations of leachate 

solutions collected from taconite tailings and compost columns. The Fe concentrations of each column 

were averaged first, then compared by volumetric proportion of taconite tailings or compost (Figure 

5.13). Most leachate solutions had iron concentrations below 300 µg/L, no matter if taconite tailings 

made up 25% or 50% of filtration materials. The highest iron concentrations were found in solutions 

collected from filtration materials which contained 50% compost (the right plot in Figure 5.13). This 

indicated that the combination of compost and taconite tailings may enhance the release of iron. This 

result led to another question: Was compost itself releasing iron? To answer this question, the iron 
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concentrations of two mixture solutions (taconite tailings+DI water, compost+DI water) from batch 

experiments were examined (Figure 5.14). It clearly showed that taconite tailings and compost can 

release iron at around 1.8 and 4.8 µg/g, respectively. 

 

Figure 5.13 Mean Fe concentrations in leachate solutions of each column. 

Figure 5.14. Fe content released to solution for the mixtures of 2.5 g compost or taconite tailing with 250 ml DI 

water.  

 

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Compost Taconite tailing

F
e 

co
n

te
n

t 
re

le
a

se
d

, 
µ

g
 F

e/
g

 s
o

il

 

5.3.3 Conclusions 

Through batch and column leaching experiments, we observed that all organic materials can remove 

metals from solution at different efficiencies. Both salvaged peat and commercial peat have the largest 

removal efficiencies for metals. Compost had a large capacity to remove metals, but the removal 

efficiencies in leaching experiments were intermediate, probably due to the adsorption rate limit. Table 

14 summarizes the performance of each of the filtration materials in pollutant removal. Commercial 

peat can significantly remove metals but lead to acidic outflow. Solutions treated by compost have 

several problems: dark brown color, high suspended solids, and potential release of Fe, NO3 and PO4. 
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Pollutant removal efficiencies of muck were intermediate when compared with other materials. 

Salvaged peat had the best performance in metal removal and exported relative clear drainage water. 

Taconite tailings may potentially enhance PO4 removal.  

Table 5.9 Summary of filtration material performance in the batch experiment and leaching experiment. 

Filtration 
material 

pH 
Color and 

suspended solid 
Metals removal 

Nitrate and 
phosphate 

removal 

Commercial 
peat 

Significant pH 
reduction 

Leachate yellow 
but clear 

Yes, good No 

Compost Neutral 

Leachate brown 
and high 
suspended solids 
content  

Yes, good in batch 
experiment but 
intermediate in 
leaching experiment 

No, but added 
large amount of 
nutrients 

Muck Neutral 
Clear, but large 
clay content 

Yes, intermediate No 

Salvage peat Neutral Clear and no color 
Yes, best removal 
efficiency 

No 

Taconite 
tailings 

Neutral 
Clear but  red in 
color 

No, except lead 
Potentially 
enhance PO4 
removal 

 

5.4 BIOLOGICAL 

Biological testing focused on the ability of study materials to grow and support vegetation. The selected 

compost, peat, and soil treatment media were evaluated using several tests to determine their potential 

to sustain plant growth. These tests included: 1) MnDOT “Suitability to Grow” tests to determine any 

potential plant toxicity; 2) Solvita® carbon dioxide (CO2) and ammonia (NH3) respiration tests to 

determine compost maturity and soil health; 3) greenhouse growth studies to determine the effects of 

varying substrate mixtures on plant germination and dry matter production; and 4) chemical analysis of 

compost, peat, and muck to determine pH, organic matter, soluble salts, and macro- and micro-

nutrients.   

5.4.1 Phytotoxicity Testing 

The “Suitability to Grow” test is currently used by MnDOT to assess media for plant growth potential 

(Stenlund, 2015). In this two-part test, glass quart canning jars were half filled with moistened media. A 

commercial soil-less mix was used as a control. In the first part of the test, a filter paper was placed on 

the media surface and 10 lettuce seeds were placed on top of the filter paper. The jars were then sealed 

and left in a growth chamber at constant temperature (25 °C) and 16 hours of simulated daylight. After 

seven days, the number of seeds that germinated were counted and the percent germination was 

calculated. Three replicates of each media were tested. 
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The second part of the test was a repeat of the first, with the filter paper omitted and the jar left 

uncovered. The seedlings were observed at seven days to determine the seedling survival percentage 

and document growth characteristics.  

Results of the tests are presented in Table 5.10. Similar seed germination of over 90% occurred for peat, 

muck, sand, and tailings, and all actually performed better than the top soil control. Seed germination 

for compost was considerably worse, with less than 30%. Seedling survival was over 80% for peat, sand, 

tailings, and top soil, with over 50% for muck and 0% for compost. Seedling growth characteristics were 

normal for peat, tailings, and top soil but were stunted for muck and sand. Some compost seedlings 

were observed at 21 days, but germination still remained less than 40%. 

Table 5.10 "Suitability to Grow" test mean germination and seedling survival for treatment media (n=3). 

Compost seedlings were also observed at 21 days due to no initial germination. 

Substrate 
Seed Germination 

% 
Seedling 

Survival % 
Growth Characteristics 

Peat 96.7 86.7 Green normal seedlings 

Muck 93.3 56.7 Stunted seedlings 

Compost 26.7 0.0 
No seedlings observed at 7 days 
36.6% at 21 days 

Sand 96.7 83.3 Stunted seedlings, some green 

Tailings 96.7 83.3 Green normal seedlings 

Top Soil 86.7 86.7 Green normal seedlings 

 

5.4.2 Compost Maturity and Soil Respiration 

The Solvita® measurement system developed at the Woods End Laboratories is a rapid method to 

determine compost maturity and soil health (Woods End Laboratories, 2016). Compost that has not 

been completely matured can be detrimental to plant growth. The Solvita® compost maturity test 

provides a simple means of assuring compost will support plant growth when used in biofilters. With 

this method, compost biological activity is determined by measuring carbon dioxide (CO2) and ammonia 

(NH3) emissions from a sample enclosed in a sealed container. Three replications of the study compost 

were prepared and tested according to Solvita® compost guidelines (Brinton, 2014). Specially-

formulated gel probes placed within the containers react to the concentrations of CO2 and NH3 gases, 

resulting in a color change. After a four-hour period the gel color was read with a digital color reader to 

determine concentrations of these gases. High concentrations of CO2 and NH3 are indicators of 

immature, unstable compost.  

Data for the study compost media are presented in Table 5.11. Comparing this data to the Solvita® 

guidelines shown in Figures 5.15, 5.16, and 5.17, the compost would have a maturity index of “6.” This 

would put it in the late stages of the curing process trending to mature compost. According to the 

Solvita® condition guidelines in Figure 5.16, “Solvita 6 and above is commonly recognized as suitable 
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maturity for official uses.” This test, in contrast to the poor results from the “Suitability to Grow” test, 

shows the compost as being mature and suitable for plant growth.   

Table 5.11 Solvita® compost maturity test color readings for the study compost media. 

Media Replication Color (CO2) Color (NH3) 

Compost 1 6.75 5 

Compost 2 6.61 5 

Compost 3 6.65 5 

 

 

Figure 5.15 Compost Maturity Index Calculator based on Solvita® CO2 and NH3 test results (Brinton, 2014). 
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Figure 5.16 Compost condition based on Solvita® Compost Maturity Index (Brinton, 2014). 

 

Figure 5.17 Composting process status based on Solvita® CO2 and NH3 test results (Brinton, 2014). 
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The Solvita® system can also be used to determine soil CO2 and NH3 respiration. Soil respiration is the 

evolution of soil CO2 by microbial activity. Measuring evolved CO2 using the Solvita® “CO2-Burst” test can 

provide an estimate of potential nitrogen (N) mineralization, an indicator of soil health, biological 

activity, and potential productivity (Brinton, 2013). In addition, the Solvita® “SLAN” (Solvita Labile Amino 

Nitrogen) test provides a measure of the easily available organic N (Amino-N) that is part of soil humus 

(Brinton, 2015). Both the Solvita® CO2-Burst and SLAN tests were performed on the study of peat, muck, 

sand, and taconite tailings. Three replications of each treatment media were prepared and tested 

according to Solvita® guidelines (Brinton, 2013; Brinton, 2015) similar to those tests run on compost but 

with dried soil and a longer 24-hour incubation period. A Solvita® digital color reader was used to 

determine concentrations of CO2 and NH3 gases. 

Results for the treatment media are presented in Table 5.12. According to the guidelines in Figures 5.18 

and 5.19, peat has a very high potential for N-mineralization—likely sufficient for most crops without 

additional N-fertilizer—and is unlikely to respond to supplemental nitrogen. Results show that peat is 

also high in organic matter and soil microbes. Compost is similar to peat with high CO2 evolution (shown 

in the compost maturity test) and high Amino-N levels. Results for muck show a high potential for N-

mineralization and sufficient organic matter but low Amino-N levels. Muck would likely respond to 

supplemental N-fertilizer. As expected, sand and tailings both have very low biological activity and soil 

microbe levels. They are very low in organic matter and have no detectable Amino-N. As such, they will 

only support sustained plant growth with supplemental organic matter and/or fertilizer.  

Table 5.12 Treatment media mean CO2 and NH3 concentrations from Solvita® “CO2-Burst” (Brinton, 2013) and 

“SLAN” tests (Brinton, 2015). n = 3. 

Media CO2 (ppm) Amino-N (ppm) 

Peat 850 402.5 

Muck 210 75 

Compost ----- 445 

Sand 2.3 0 

Tailings 2.3 0 
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Figure 5.18 Potential N-mineralization and soil condition based on Solvita® CO2-Burst test (Brinton, 2013). 

 

Figure 5.19 Soil biological status and likely response to nitrogen based on Solvita® SLAN test (Brinton, 2015). 

 

5.4.3 Seed Germination and Plant Growth 

In addition to the MnDOT Suitability to Grow test and Solvita® measurement system, compost, peat, soil 

media, and substrate mixes were assessed using a plant bioassay that was developed for the evaluation 

of compost (University of Florida, 2011). The procedure consists of seed germination and plant growth 

tests that were conducted with both radish and oats in the NRRI greenhouse. Peat, compost, sand, and 

taconite tailings were tested alone and in various mixtures as detailed in Table 5.13. Muck was not 

included in the tests due to its heavy clay texture that made it nearly impossible to mix with other 

materials. Media/mixtures were placed in 7” x 5” x 2” containers and placed in the greenhouse under 

constant temperature and day length with daily automatic sprinkler watering. For each media/mixture, 
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three replications were planted with six oat seeds and another three replications with six radish seeds. 

Germination/survival was recorded after seven days. Plants were harvested after 21 days, and whole 

plant biomass (shoots and roots) dry weights were determined.  

Table 5.13 Media/mixture volume ratios used in the germination and plant growth greenhouse trials. 

Peat Compost Tailings Sand 

 100  0  0  0 

 50  0  50  0 

 25  0  75  0 

 10  0  90  0 

 50  0  0  50 

 25  0  0  75 

 10  0  0  90 

 0  100  0  0 

 0  50  50  0 

 0  25  75  0 

 0  10  90  0 

 0  50  0  50 

 0  25  0  75 

 0  10  0  90 

 0  0  100  0 

 0  0  0  100 

  

Germination/survival percent was not significantly different for any of the media/mixtures. Mean dry 

weights for radish and oats biomass for each media/mixture are presented in Figures 5.20 and 5.21. The 

data are graphed in descending order. For both radish and oats, the media that resulted in the highest 

biomass dry weight was the 25% compost – 75% sand mixture (Figure 5.22). This mixture corresponds to 

the current MnDOT specifications (MnDOT, 2016) for filter media topsoil. It is not clear why the 25% 

compost – 75% sand mixture performed better than the 25% compost – 75% tailings. One possible 

explanation could be that the compost-sand mixture inadvertently received more water than the 

compost-tailings mixture. Photos of the two treatments show more water marks on the identification 

stakes for the compost-sand mixture. The 25% compost – 75% sand mixture also produced the most 

oats biomass, followed by the 25% compost – 75% tailings mixture. Both radish and oats containers 

were in the same flats for each treatment (Figure 5.22). It’s possible that the compost-sand treatment 

flat received more water, thus resulting in greater biomass for both radish and oats. Further testing of 

the two treatments should be conducted to confirm or deny this explanation. 
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Figure 5.20 Mean dry weight of harvested radish after 21-day growth trial in various treatment media and mixes 

(n=3). 

 

Figure 5.21 Mean dry weight of harvested oats after 21-day growth trial in various treatment media and mixes 

(n=3). 
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Figure 5.22 Oats and radish in 25% compost – 75% sand media mixture at 21 days after planting. 

 

5.4.3.1 The effects of peat and compost 

Statistical analysis was conducted to determine the effect of peat and compost on germination/survival 

and biomass dry weight. Survival and dry weights of oats and radish were compared across the 

percentage of peat or compost used in the media (Figures 5.23 and 5.24). Mean survival and dry weights 

were compared among the different substrate levels by Tukey HSD test (Table 5.14). Significant 

difference was found for dry weight of oats, in which media containing compost at 25% by volume 

produced more dry weight than media with compost at 10% by volume. Media comprised of 50% peat 

can produce more dry weight for radish than with 100% peat. 
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Figure 5.23 Survival and dry weight of oats at different percentages of peat or compost. 

 

Figure 5.24 Survival and dry weight of radish at different percentages of peat or compost. 
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Table 5.14 Mean survival and dry weights of oats and radish at different percentages of peat or compost. 

Numbers with different letters at same column indicates significant difference by Tukey HSD test. 

Plant Substrate Percentage Survival Dry weight 

Oats 

Peat  10 5.83A 0.37A 

  25 6A 0.47A 

  50 5.83A 0.44A 

  100 6A 0.42A 

    

Compost  10 6A 0.46B 

  25 6A 0.72A 

  50 6A 0.53AB 

  100 6A 0.60AB 

     

Radish 

Peat  10 5.5A 0.21AB 

  25 5.83A 0.26AB 

  50 6A 0.31A 

  100 5.17A 0.15B 

    

Compost  10 5.83A 0.25A 

  25 5.5A 0.49A 

  50 5.67A 0.29A 

  100 5.83A 0.29A 

 

The mean values of the difference between compost and peat were compared with zero to examine if 

significant difference was observed (Table 5.15). For two response variables and two types of plants, 

only the dry weight of oats presents significant difference from zero (p-value<0.05). The mean was 

0.147, which is greater than 0. This positive value indicated that compost produced significantly higher 

dry weights of oats than peat. For survival or dry weight of radish, there is no significant difference 

between compost and peat. 

Table 5.15 t-test results for the comparison of matched pairs between compost and peat. Significant difference 

was observed when P-value is less than 0.05. 

Plant 
Response 
variable 

Mean 
(compost – peat) 

95% confidence 
interval 

P-value (Null hypothesis: 
Mean of the difference 

equals to zero) 

Oats 
Survival 0.095 [-0.055,0.246] 0.1723 

Dry weight 0.147 [0.050,0.244] 0.0098 

Radish 
Survival 0 [-0.398,0.398] 1.000 

Dry weight 0.092 [-0.051,0.235] 0.1665 
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5.4.3.2 The effects of substrate ratios 

Multiple linear regression models using the percent ratio of peat, compost, and tailings as predictors 

and survival or dry weight as response variable were developed for each plant. During model simulation, 

the volume percentages of substrates were considered as categorical variables. Model coefficients were 

summarized in Table 5.16. For survival of oats and radish, no significant model can be developed. 

Tailings did not affect the dry weight of oats, but tailings significantly reduced the dry weight of radish. 

Peat and compost improved both plants’ growth, particularly when 25% of soil was compost.  

Table 5.16 Multiple linear regression model coefficients for survival and dry weights of oats and radish. 

Significant coefficients (P-value <0.05) were shown in bold. Intercept represents the mean values of survival or 

dry weight when soil was composed of 25% compost and 75% sand. 

 Oats Radish 

 Survival 
Dry 

weight 
Survival Dry weight 

(Intercept) 6.000 0.737 5.667 0.546 

Peat10 0.083 0.127 0.000 0.109 

Peat25 0.167 0.205 0.333 0.132 

Peat50 -0.083 0.159 0.333 0.150 

Peat100 0.167 0.131 -0.500 -0.033 

Compost0 -0.167 -0.450 0.000 -0.363 

Compost10 0.083 -0.238 0.333 -0.212 

Compost50 -0.083 -0.199 0.000 -0.235 

Compost100 0.000 -0.134 0.167 -0.253 

Tailings50 0.167 -0.018 0.000 -0.042 

Tailings75 0.000 -0.044 -0.333 -0.117 

Tailings90 -0.167 -0.084 -0.333 -0.170 

Tailings100 0.167 0.047 0.167 -0.011 

     

Model R2 0.18 0.70 0.20 0.60 

Model P-value 0.58 <0.0001 0.48 <0.0001 

 

5.4.4 Refined greenhouse growth trials  

In order to garner more conclusive results than provided by the original greenhouse study on certain 

aspects of particular interest, a refined study was initiated in April 2017. The goals of the study were to 

determine the plant growth response to: 1) the effect of sand vs. tailings when used as 75% of the 

treatment media; and 2) the effect of replacing the remaining 25% of the media with varying amounts of 

salvaged peat rather than compost. 

The study design was similar to the first greenhouse study in that both radish and oats were planted in 

replicated pots. Media/mixtures were placed in 7” x 5” x 2” containers and placed in the greenhouse 
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under constant temperature and day length with daily automatic sprinkler watering. For each 

media/mixture, six replications were planted with six oat seeds and another six replications with six 

radish seeds, as opposed to only three replications in the original greenhouse study. An extra effort was 

made to completely randomize the pots in flats to ensure no potential effect of unequal watering. The 

flats were also rearranged each week during the study.  

Plants were harvested after 21 days, and whole plant biomass (shoots and roots) dry weights were 

determined. The dry weight for each replication (six plants combined) was used in the statistical 

analysis. 

Table 5.17 Media/mixture volume ratios used in the revised greenhouse growth trials. 

Sand Tailings Compost Peat 

 75  0  25  0 

 75  0  15  10 

 75  0  5  20 

 0  75  25  0 

 0  75  15  10 

 0  75  5  20 

  

5.4.4.1 The effect of sand vs. tailings 

Figure 5.25 presents the data distribution of radish and oats weights based on 0% (75% sand) and 75% 

tailings content for three organic substrate groups: 5% compost+20% peat, 10% compost+15% peat, and 

25% compost+0% peat. It should be noted that the inorganic substrate is either 75% sand (labeled 0% 

tailings) or 75% tailings.  
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Figure 5.25 Quantile plots of radish (left column) and oats (right column) weights for substrate containing: a) 5% 

compost+20% peat; b) 10% compost+15% peat; c) 25% compost+0% peat. 

 Note: The x axis label of 0% tailings is 75% sand. 

 

To test if tailings or sand produce significantly different plant weights, a t-test was performed for plant 

weights based on tailings composition (0% and 75%) (Table 5.18). In order to take into account the 

effects caused by different organic material compositions, the test was conducted for each of the three 

sets of organic compositions (5% compost+20% peat, 10% compost+15% peat, and 25% compost+0% 

peat). In general, 75% tailings resulted in slightly increased plant weights, but this effect was 
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insignificant except for the 5% compost+20% peat treatment for radishes, where tailings outperformed 

sand. 

Table 5.18 Mean of radish and oat weights were compared by t-test between 0% tailing (in other words 75% 

sand) and 75% tailing. The significant difference (P-value < 0.05) was in bold for P-value. 

Plant Organic substrate 
Mean weight of Radish, g P-value from 

t-test 0% tailing (=75% sand) 75% tailing 

Radish 

5% compost+20% peat 0.031 0.034 0.0231 

10% compost+15% peat 0.039 0.039 0.8282 

25% compost+0% peat 0.056 0.059 0.4640 

Oats 

5% compost+20% peat 0.051 0.050 0.9476 

10% compost+15% peat 0.056 0.060 0.2216 

25% compost+0% peat 0.077 0.078 0.8935 

 

5.4.4.2 The effect of replacing compost with peat 

As the sand and taconite tailings did not produce a significant difference for most of the studied plant 

weights, the data from both sand and tailings were combined together to fit a linear regression by using 

peat/compost ratio as predictor and plant weight as response variable (Figure 5.26). Both radish and 

oats had a significant decrease in plant weight with increasing peat/compost ratio. These decreasing 

trends are expressed in Eqs. (5.1) and (5.2) for radish and oats. 

Radish Weight (g) = 0.054 – 0.0059*Peat/compost ratio R2=0.68, n=36 (5.1) 

Oats Weight (g) = 0.074 – 0.0064*Peat/compost ratio R2=0.66, n=36 (5.2) 

 

 

Figure 5.26 The linear fit between plant (radish or oats) weight and peat/compost ratio. 
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The combined overall effects of sand vs. tailings and replacing compost with peat are shown in Figures 

5.27 and 5.28. The results showed little to no significant effect of sand vs. tailings on plant growth 

response. However, replacing compost with peat resulted in reduced plant growth with increasing 

amounts of peat. Based on this refined greenhouse study, sand and tailings are interchangeable from a 

plant growth perspective. Replacing compost with peat, however, may require supplemental fertilizer. 

 

Figure 5.27 Effects of sand vs. tailings and replacing compost with peat on radish mean dry weight in greenhouse 

studies. 
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Figure 5.28 Effects of sand vs. tailings and replacing compost with peat on oats mean dry weight in greenhouse 

studies. 

 

5.4.4.3 Organic component nutrient analyses 

To help determine the reasons for the reduced plant growth response with increased replacement of 

compost with peat, these substrates and muck were analyzed by the University of Minnesota Soils 

Analytical Laboratory. The substrates were tested according to professional turf management 

procedures as this most closely approximated the type of growing environment where the substrates 

would eventually be used. The tests determined macro and micro nutrients, organic matter (O.M), pH, 

and soluble salts (E.C.). The results are presented in Table 5.19. 

Table 5.19 Mean chemical analyses for study peat, compost, and muck (n=3). 

Media 
O.M. 
(%) 

E.C. 
(mmhos

/cm) 
pH 

NO3-N 
(ppm) 

P 
(ppm) 

K 
(ppm) 

SO4-S 
(ppm) 

Zn 
(ppm) 

Fe 
(ppm) 

Mn 
(ppm) 

Cu 
(ppm) 

B 
(ppm) 

Ca 
(ppm) 

Mg 
(ppm) 

Peat  55.4 0.6 6 60.0 2.3 36.7 22.3 1.2 201.1 12.4 0.4 0.4 3429.0 623.3 

Compost 36.3 16.0 7 60.0 100.0 300.0 40.0 33.6 225.2 23.5 5.3 5.0 3572.0 892.3 

Muck 8.2 1.9 8 6.4 2.7 97.3 14.7 3.2 95.4 23.2 5.9 0.2 4995.7 514.0 

 

Both peat and compost are high in organic matter and nitrate nitrogen (NO3-N) and have an optimum 

pH in the neutral to slightly acidic range. Peat is low in phosphorus (P) and potassium (K), while compost 

is very high in these macronutrients. This was reflected in lower plant biomass with peat in the 
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greenhouse plant growth trials and suggests that peat would benefit from additional fertilization with 

these nutrients. The Soil Test Report recommendation calls for 45 lb/acre of phosphate and 90 lb/acre 

of potash fertilizer.  

Soluble salts (E.C. – electrical conductivity) for the study compost considerably exceeded the MnDOT 

Grade 2 compost requirement of ≤10 mmhos/cm (MnDOT, 2016). This could be the reason for the poor 

performance of compost in the MnDOT “Suitability to Grow” test. The toxic effect of such high soluble 

salts was alleviated in the greenhouse growth trials, presumably by dilution with the sand and tailings 

and by regular watering and leaching. This should be considered when using compost in stormwater 

treatment media mixes. No supplemental fertilizer should be applied when using compost. 

Muck was low in organic matter, NO3-N and P, with medium levels of K. The pH was quite alkaline at 8. 

This, combined with its poor physical and handling characteristics, makes it a poor candidate for use in 

stormwater treatment.  

5.4.5 Conclusion 

Compost and peat both performed well in mixtures with sand and taconite tailings in providing a viable 

substrate for plant growth. Media mixes containing compost, especially at 25% compost, performed the 

best in initial plant growth trials. Muck was difficult to mix with any other media and its value for plant 

growth minimal. In the initial greenhouse study taconite tailings at higher percentages (>50%) had a 

negative effect on radish dry weight. In the subsequent refined greenhouse study, results showed little 

to no significant effect of sand vs. tailings on plant growth response. However, replacing compost with 

peat resulted in reduced plant growth with increasing amounts of peat. This could perhaps be remedied 

with additions of supplemental fertilizer. The MnDOT Suitability to Grow test and Solvita® tests provided 

rapid analysis of potential media and predicted success in the greenhouse trials. The exception was the 

Suitability to Grow test for compost, which gave false negative results. The seed germination and plant 

growth greenhouse trials provided the most information on potential treatment media success in 

supporting plant establishment and growth. 

5.5 CONCLUSION 

Chapter 5 outlines the results from a testing protocol designed to characterize alternative media for 

water retention and treatment in bioslopes and bioswales. Material characterizations are summarized 

by organic group and inorganic group. 

5.5.1 Organic group – peat, compost, and muck 

Peat materials performed as well or better than compost in all hydraulic, geotechnical, and 

environmental tests. Peat has a high moisture-holding capacity, hydraulic conductivity, pollutant 

removal efficiencies, and performs similarly to compost when added as an amendment to sand. Both 

peat and compost support plant establishment and growth. Mixes containing compost performed the 

best in plant growth trials. Due to documented variability in peat’s properties depending on origin and 
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degree of decomposition, it may be prudent to evaluate peat materials on a case-by-case basis when 

used in stormwater treatment devices. Supplemental fertilizer containing P and K should be added to 

peat when soil analysis deems it appropriate.   

Muck has deleterious qualities that preclude its recommendation for use in biofilter media mixtures 

including a low hydraulic conductivity, low workability, relatively low pollutant removal capacities, and a 

poor plant substrate. The high clay content of the studied muck material impedes infiltration, which may 

increase the probability of overland flow when used in bioslopes. Additionally, muck material was found 

to be difficult to mix, adheres to equipment, and when dried becomes hard and impermeable. Due to 

the high variablity in materials described as "muck," its use in non-infiltration bioslopes and as a topsoil 

component is highly dependent on the material and application. Although not yet tested as part of this 

study, muck may be suitable as a topsoil component if amended with sufficient organic matter and 

gypsum to improve soil structure, supplemental fertilizer, and covered with a mulch to prevent it from 

drying out. The additional costs incurred with the use of muck would have to be weighed against the 

savings realized using salvage material. 

5.5.2 Inorganic group – taconite tailings and sand 

Due to their similar physical characteristics, the hydraulic and geotechnical performance of these 

materials is similar, making them interchangeable from a civil engineering perspective. In contrast to 

sand, taconite tailings showed potentials to removal phosphate from water. Sand and tailings are 

interchangeable from a plant growth perspective.  

From laboratory test results, peat was selected as a possible alternative to compost. Pilot tests are 

underway to compare the infiltration capacity, pollutant removal capability, and fertility of peat 

mixtures to compost mixtures when subjected to field conditions. 
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CHAPTER 6:   PRELIMINARY FIELD RESULTS AND DISCUSSION 

6.1 INTRODUCTION 

Chapter 6 provides an overview of treatment system design, media selection, site selection, monitoring 

methods, and preliminary results from a field pilot test. Media selection for field testing was based on 

laboratory test results, as described in the previous chapter, which revealed peat as a viable alternative 

to compost for use in bioslopes and bioswales. The pilot test was designed to assess the performance of 

peat when used as a soil amendment for improving water retention, water absorption, plant growth, 

and water quality under field conditions.  

6.2 SITE SELECTION 

A test area was selected at the NRRI in Hermantown, Minnesota in coordination with the project 

technical liaison (Figure 6.1). Bioslope test plots were constructed on October 27, 2016 on a 1:5 slope 

(22% grade) in silty or clayey sand (Figure 6.2). 

 

Figure 6.1 Aerial image of test site located at the NRRI in Hermantown, MN. 
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Figure 6.2 View of NRRI test site. Study plots are located center right in the image, adjacent to the parking lot. 

 

6.3 PRELIMINARY TREATMENT SYSTEM DESIGN 

Mixed media field testing was designed to focus on determining infiltration capacity, pollutant removal, 

and vegetative support capabilities of the selected filter media mixtures. Media mixtures were blended 

by volume in accordance with MnDOT Specification 3877.2 to compare a 1:1 mixture of native soil and 

compost to a 1:1 mixture of native soil and peat. Once media was mixed in proper ratios, six square 

media beds approximately 36 inches x 36 inches in size (three containing compost and three containing 

peat) were prepared by placing six inches of treatment media over four inches of gravel. The gravel layer 

was included to promote drainage via an underdrain (Figure 6.3) to collection vessels (Figure 6.4) which 

allowed for determination of water quality effects. The plan was to seed the plots with the same seed 

mix used for the surrounding area. Due to the late installation date and snowfall occurring soon after, 

this could not be completed in 2016. Native soil samples were collected at the time of construction for 

laboratory characterization. In addition, instrumentation that monitors rainfall, soil moisture content, 

temperature and overland runoff (as described in the following section) were installed in the spring of 

2017 for long term field monitoring. Plots were seeded in July 2017. 
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Figure 6.3 Cross section of mixed media pilot plant. 

 

Figure 6.4 Effluent water collection vessel for water quality analysis. 

 



83 

6.4 MONITORING METHOD AND EQUIPMENT 

Field monitoring instrumentation was designed and installed to monitor rainfall, soil-moisture content, 

and temperature. All HOBO® brand instruments, software, and data loggers used for field monitoring 

were purchased from Onset Computer Corporation. The objective of the monitoring equipment was to 

compare the infiltration capacity performance of compost and peat when added as a soil amendment to 

native soils. By monitoring rainfall and soil moisture, a water balance was calculated to determine the 

amount of water captured by the pilot plots. Temperature data was included to gain knowledge on 

conditions during which surface runoff was observed, for example, when soil is frozen. Frozen ground 

conditions were deemed possible during spring and fall, when rainfall and freezing temperatures are 

likely to be concurrent.  

The instruments used include a data logger (Figure 6.5) with 10 ports to accommodate six soil moisture 

sensors (Figure 6.6), a rain gauge (Figure 6.7), and a temperature sensor (Figure 6.8). A solar panel 

(Figure 6.9) was installed to provide a trickle charge for the 10 Amp hour battery to extend battery life. 

 

Figure 6.5 Multi-channel data logger for data storage. 
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Figure 6.6 Soil moisture probe. 

 

Figure 6.7 Rain gauge. 
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Figure 6.8 Temperature sensor. 

 

 

Figure 6.9 Solar panel for providing trickle charge of data logger. 

 

6.5 RESULTS 

This section describes the preliminary results from the in situ testing program outlined in the previous 

section. In situ monitoring and collection focused on vegetative growth, water-holding capacity, and 

filtration of biofilter media. This section covers preliminary results from measurements taken in the 

spring and summer of 2017 in each of the three major areas of interest to this project: infiltration 

capacity, water quality, and vegetative support. 
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6.5.1 INFILTRATION CAPACITY 

The infiltration capacity of six mixed biofilter media plots was tested in the field during the months of 

April and May 2017. Three plots contained equal mixtures of MnDOT Grade 2 compost and native soil 

(silty or clayey sand) and three plots contained an equal mixture of peat and native soil. The field plots 

were monitored for soil moisture content and rainfall data to estimate and compare water absorption. 

Peat and compost amendments to native soils resulted in similar water absorbing capabilities, shown in 

Table 6.1 and Figure 6.10. 

Table 6.1 Comparison of water absorbing capacity of peat and compost biofilter media plots. 

Rainfall event Media Type 
Pre-Event Moisture 

Content (%) 
Peak-Event Moisture 

Content (%) 
Average Water 
Absorption (%) 

4/18 – 4/20 Peat 28 40 12 

24 36  

24 35 

Compost 21 33 11 

26 35 

20 32 

4/23 – 4/26 Peat 28 37 10 

24 35 

21 31 

Compost 21 31 10 

26 35 

22 31 

4/28 Peat 28 31 9 

24 35 

21 34 

Compost 20 31 10 

26 35 

22 31 

5/1 – 5/3 Peat 31 32 1 

29 30 

28 29 

Compost 27 28 1 

30 31 

26 27 
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Figure 6.10 Preliminary data comparing rainfall events to in situ water content in peat and compost biofilter 

media plots. 

 

6.5.2 WATER QUALITY 

Samples from twelve rain events (Figure 6.11) were collected between the end of October 2016 (the site 

constructed) and the middle of August 2017. The rain events on April 19 and April 21 were close to each 

other; therefore, samples from these two events were combined together. 
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Figure 6.11 Daily precipitation record between November 1, 2016 and August 15, 2017 for the weather station 

located at the Duluth Airport, which is about 1000 ft. distance to project field plot. Red circle gives the rain 

events that have water samples collected. Precipitation data were downloaded from NOAA (2017). 
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For each rain event, samples from rainwater, compost plots, and peat plots were collected. Initially we 

designed three compost plots and three peat plots to get average data for compost and peat plots. 

Unfortunately, only two of three compost plots and two peat plots had filtrated water collected, 

probably due to potential leaking pipes in the other three plots.  

Samples were analyzed for pH, metals (Cu, Pb and Zn), and phosphate in the laboratory (Figure 6.12). 

Lead concentrations were below the detection limit (1 µg/L) for most samples and are therefore not 

reported here. In general, chemical concentrations ranked from high to low were compost effluent, peat 

effluent, and rainwater. Rain water was slightly acidic to neutral, while effluents from compost and peat 

were neutral. Both compost and peat released copper slightly, less than 100 µg/L. However, a large 

amount of zinc (maximum concentration = 433 µg/L) was leached from compost when zinc 

concentration in rainwater and peat effluent were below 25 µg/L and below 150 µg/L, respectively. 

Similar to previous laboratory column leaching experiment results, the field study also showed the 

export of a large amount of phosphate, ranging from 373 to 11 656 µg/L, from compost plots. Peat 

discharged phosphate to water, too, but at relatively small amount (below 210 µg/L). 
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Figure 6.12 pH and the concentrations of copper (Cu), zinc (Zn), and phosphate in rain water and effluent from 

compost and peat plots collected in 12 rain events. 
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6.5.3 VEGETATIVE SUPPORT 

Due to the late fall study installation date and snowfall, the plots were not seeded in the fall of 2016. 

However, some weedy vegetation had established on the plots during the 2017 spring season. Photos of 

the plots were taken on June 12, 2017. As seen in Figure 6.13, the plots containing the compost mixture 

had considerably more vegetative cover than the plots containing the peat mixture. The plots were 

cleared of all weedy vegetation in preparation for seeding that occurred on July 17, 2017. All plots were 

seeded with the same seed mix (Figure 6.14) as used on the rest of the study slope location and covered 

with a straw mulch. Photos taken on July 26 (Figure 6.15) and August 9, 2017 (Figure 6.16) show good 

growth of the oats cover crop on both compost and peat substrates.  

Figure 6.13 Vegetation on compost (top) and peat (bottom) plots. Photographed on June 12, 2017. 

 

 



91 

 

 

Figure 6.14 Seed mix planted on NRRI MnDOT research plots on July 17, 2017. 
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Figure 6.15 Vegetation on compost (top) and peat (bottom) plots. Photographed on July 26, 2017. 
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Figure 6.16 Vegetation on compost (top) and peat (bottom) plots. Photographed on August 9, 2017. 

           

Vegetation monitoring will continue throughout the summer. Photographs of each plot will be 

continued for an overall qualitative assessment. The plots will also be surveyed using a “Cover-Point 

Optical Device” (Figure 6.17). The Cover-Point Optical Device (ESCO Associates Inc., Boulder, Colorado) is 

designed for use in determining percent vegetative cover using the point-intercept method. The system 

consists of an optical device mounted on a horizontal bar that is supported above the sampling area on 

one end by a standard photographic tripod and on the other by an adjustable support rod. The optical 

device, similar in appearance to a telescopic rifle sight, has 5X magnification with extremely fine cross 

hairs for viewing a relatively dimensionless point. The horizontal bar is approximately one meter long 

with 10 stops at 10 cm intervals. The percent vegetative cover is determined by looking through the 

eyepiece and recording hits and misses of vegetation using the fine cross hairs within the optics for each 

of 10 sample points across the bar. Several such transects were conducted for each plot to determine 
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percent vegetative cover. The point-intercept method will give a repeatable quantitative estimate of the 

ability of the various biofilter mixes to support plant growth. 

 

Figure 6.17 Cover-Point Optical Device used to determine percent plant cover. 

 

Initial photographs of weed growth prior to seeding show significantly better qualitative plant growth on 

the compost plots. After seeding, this qualitative difference is less pronounced. Quantitative 

measurement of the plots using the Cover-Point Optical Device was conducted on August 11, 2017. 

Three transects for a total of 30 points were recorded as vegetated or not vegetated for each plot. The 

results are shown in Table 6.2. Mean percent cover for the compost plots was 31% and 43% for the peat 

plots. Plant cover at this time was primarily oats, the cover crop included with the seed mix. The other 

seed mix native plant species are expected to establish over time. 
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Table 6.2. Percent cover for NRRI MnDOT biofilter research plots determined on August 11, 2017 using a Cover-

Point Optical Device (n=30). 

 Percent Cover Mean 

Compost 1 20% 31% 

Compost 2 43%  

Compost 3 30%  

Peat 1 47% 43% 

Peat 2 60%  

Peat 3 23%  
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CHAPTER 7:  CONCLUSION 

7.1 PROJECT CONCLUSIONS 

This project demonstrated that peat has a high potential to replace commercial compost in MnDOT 

standard bioslope and bioswale design. Additionally, taconite tailings performed in a comparable 

fashion as the sand currently specified in MnDOT designs. Results from this project showed that muck 

has little potential to replace commercial compost or peat due to low permeability and infiltration 

capacity, filtration, and plant growth support. Finally, a pilot field study established good agreement 

between laboratory results and field measurements for the 50:50 peat-sand mixes as well as comparing 

performance between peat-sand mixes and compost-sand mixes. 

Finding alternatives to commercial compost and sand would help MnDOT meet regulatory requirements 

as well as reduce purchase and shipping costs and the need to transport and store excavated material 

from rural road construction sites. This project exhibits the potential to use what was previously waste 

material in a beneficial manner. 

7.2 CIVIL ENGINEERING CONCLUSIONS 

The primary civil engineering design requirement was infiltration rate. Because the saturated condition 

represents the worst-case scenario, saturated hydraulic conductivity was used as a measure of 

infiltration rate and, therefore, water-holding capacity. A minimum requirement of 1.5*10-4 cm/sec was 

determined from testing current MnDOT requirements for bioslope and bioswale design (40 – 60% 

commercial compost mixed with sand). Laboratory results showed that muck had unacceptably low 

hydraulic conductivity. Peat performed at least as well as compost in terms of saturated hydraulic 

conductivity and other important hydraulic and geotechnical considerations. Additionally, taconite 

tailings and sand were interchangeable from a civil engineering perspective. A pilot field study 

comparing a 50:50 mix of peat and sand with the same percentage mix of compost and sand was 

installed. Initial data showed the two mixes had similar water storage capacity. 

Due to the variability of materials, not all peat or taconite tailing will behave the same. Results from this 

project show that the saturated infiltration rate as measured using the falling head test best predicts a 

biofilter media mixture’s ability to meet civil engineering requirements. In summary, mixtures composed 

of 40 – 60% peat with the remainder composed of either sand or taconite tailings compare favorably 

with current MnDOT specifications for bioslope and bioswale design. 

7.3 ENVIRONMENTAL ENGINEERING CONCLUSIONS 

The environmental tests of salvaged filtration materials quantified pollution retention capacities of each 

material under steady or dynamic conditions. Under steady conditions, salvaged peat, compost, and 

commercial peat had high metal (copper, lead, and zinc) retention capacities, generally over 80%, and 

the difference among these materials was small. Muck can adsorb around 50% of metals. In contrast to 
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the high removal efficiencies for metals, these organic materials did not remove nutrients, especially 

compost, which released a significant amount of nitrate and some phosphate. 

The export of phosphate from compost was also observed in column leaching experiments and the field 

pilot test. More than 1 000 µg/L phosphate was exported from compost columns or field pilots 

containing compost. In addition, average compost metal removal efficiencies were around 83% for 

copper and zinc, which were significantly lower than salvaged peat metal removal efficiencies of more 

than 98% under dynamic conditions.  

Taconite tailings showed potential to remove phosphate, especially under slightly acidic conditions (pH 

around 6). Commercial peat produced acidic outflow, and the combination of commercial peat with 

taconite tailings resulted in outflow phosphate concentrations of around 10 µg/L.  

Overall, salvaged peat had better pollutant remove efficiencies than compost. Taconite tailings can be 

used to replace sand and to enhance potential phosphate removal.  

7.4 BIOLOGICAL CONCLUSIONS 

Compost and peat both performed well in mixtures with sand and taconite tailings in providing a viable 

substrate for plant growth. Media mixes containing compost, especially at 25% compost, performed the 

best in plant growth trials. Muck was difficult to mix with any other media, and its value for plant growth 

was minimal. Greenhouse study results showed little to no significant effect of sand vs. tailings on plant 

growth response. However, replacing compost with peat resulted in reduced plant growth with 

increasing amounts of peat. This could be remedied with additions of supplemental phosphorus and 

potassium fertilizer as these were shown to be deficient in the nutrient analyses. 

The MnDOT Suitability to Grow test and Solvita® tests have the potential for rapid analysis of media, and 

in most cases, predicted success in the greenhouse trials. The exception was the Suitability to Grow test 

for compost, which gave false negative results. The seed germination and plant growth greenhouse 

trials, and nutrient analysis provided the most information on potential treatment media success in 

supporting plant establishment and growth. 

Both peat and compost support plant establishment and growth. Due to documented variability in 

peat’s properties, depending on origin and degree of decomposition, it may be prudent to evaluate peat 

materials on a case-by-case basis when used in stormwater treatment devices. Sand and taconite 

tailings are interchangeable from a plant growth perspective. 

7.5 POTENTIAL FOR FUTURE RESEARCH 

This project primarily focused on the laboratory assessment of biofiltration media mixtures. A pilot field 

study began in the spring of 2017. Initial results from the field study showed good agreement with 

laboratory results in each of the three areas of the project. However, several factors were not 

considered in the pilot field project including performance with time after installation and variability of 
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material. Accordingly, the authors and technical advisor on this project are interested in studying field 

performance of biofiltration media mixtures in more detail. 

A follow-on project beginning in the fall of 2017 will continue to monitor the pilot field study area. 

Additionally, a large-scale biofiltration system based on recommendations from this project is planned 

for an existing MnDOT construction project. This system will be instrumented and monitored through 

time, at least through the end of the follow-on project (summer 2019). Finally, previously constructed 

biofiltration systems will be instrumented and monitored. Results from these systems will give an 

indication of performance through time after construction. 
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